Acoustic force patterning is an emerging technology that provides a platform to control the spatial location of cells in a rapid, accurate, yet contactless manner. However, very few studies have been reported on the usage of acoustic force patterning for the rapid arrangement of biological objects, such as cells, in a three-dimensional (3D) environment. In this study, we report on a bio-acoustic force patterning technique, which uses surface acoustic waves (SAWs) for the rapid arrangement of cells within an extracellular matrix (ECM)-based hydrogel such as gelatin methacryloyl (GelMA). A proof-of-principle was achieved through both simulations and experiments based on the in-house fabricated piezoelectric SAW transducers, which enabled us to explore the effects of various parameters on the performance of the built construct. The SAWs were applied in a fashion that generated standing SAWs (SSAWs) on the substrate, the energy of which subsequently was transferred into the gel, creating a rapid, yet contactless alignment of the cells (< 10 seconds, based on the experimental conditions). Following UV radiation induced photo-crosslinking of the cell encapsulated GelMA pre-polymer solution, the patterned cardiac cells readily spread after alignment in the GelMA hydrogel and demonstrated beating activity in 5-7 days. The described acoustic force assembly method can be utilized not only to control the spatial distribution of the cells inside a 3D construct, but can also preserve the viability and functionality of the patterned cells (e.g. beating rates of cardiac cells). This platform can be potentially employed in a diverse range of applications, whether it is for tissue engineering, in vitro cell studies, or creating 3D biomimetic tissue structures.
Unmodified polyvinyl chloride (PVC) has low thermal stability and high hardness. Therefore, using plasticizers as well as thermal stabilizers is inevitable, while it causes serious environmental and health issues. In this work, for the first time, pure food-grade PVC with potential biomedical applications is processed and 3D printed. Samples are successfully 3D printed using different printing parameters, including velocity, raster angle, nozzle diameter, and layer thickness, and their mechanical properties are investigated in compression, bending, and tension modes. Scanning electron microscopy is also used to evaluate the bonding and microstructure of the printed layers. Among the mentioned printing parameters, raster angle and printing velocity influence the mechanical properties significantly, whereas the layer thickness and nozzle diameter has a little effect. Images from scanning electron microscopy also reveal that printing velocity greatly affects the final part's quality regarding defective voids and rasters' bonding. The maximum tensile strength of 88.55 MPa is achieved, which implies the superiority of 3D-printed PVC mechanical properties compared to other commercial filaments. This study opens an avenue to additively manufacture PVC that is the second most-consumed polymer with cost-effective and high-strength features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.