Bone mineral density (BMD) is the most important predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and East Asian ancestry. We tested the top-associated BMD markers for replication in 50,933 independent subjects and for risk of low-trauma fracture in 31,016 cases and 102,444 controls. We identified 56 loci (32 novel)associated with BMD atgenome-wide significant level (P<5×10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal-stem-cell differentiation, endochondral ossification and the Wnt signalling pathways. However, we also discovered loci containing genes not known to play a role in bone biology. Fourteen BMD loci were also associated with fracture risk (P<5×10−4, Bonferroni corrected), of which six reached P<5×10−8 including: 18p11.21 (C18orf19), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
Pulmonary function measures reflect respiratory health and predict mortality, and are used in the diagnosis of chronic obstructive pulmonary disease (COPD). We tested genome-wide association with the forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in 48,201 individuals of European ancestry, with follow-up of top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P<5×10−8) with pulmonary function, in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1, and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist–hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9×10−11) and MSRA (WC, P = 8.9×10−9). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6×10−8). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.
These results show an inverse but moderate association of birthweight with adult mortality from all-causes and a stronger inverse association with cardiovascular mortality. For men, higher birthweight was strongly associated with increased risk of cancer deaths. The findings suggest that birthweight can be a useful indicator of processes that influence long-term health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.