In this report, we describe in detail the O(2)-binding chemistry of the metalloporphyrin (F(8)TPP)Fe(II) (1). This complex was synthesized from aqueous dithionite reduction of (F(8)TPP)Fe(III)-Cl (X-ray structure reported: C(55)H(36)ClF(8)FeN(4)O; a = 13.6517(2) A, b = 13.6475(2) A, c = 26.3896(4), alpha = 90 degrees, beta = 89.9776(4) degrees, gamma = 90 degrees; monoclinic, P2(1)/c, Z = 4). Complex 1 crystallizes from toluene/heptane solvent system as a bis(toluene) solvate, (F(8)TPP)Fe(II).(C(7)H(8))(2), with ferrous ion in the porphyrin plane (C(58)H(36)F(8)FeN(4); a = 20.9177(2) A, b = 11.7738(2) A, c = 19.3875(2), alpha = 90 degrees, beta = 108.6999(6) degrees, gamma = 90 degrees; monoclinic, C2/c, Z = 4; Fe-N(4)(av) = 2.002 A; N-Fe-N (all) = 90.0 degrees ). Close metal-arene contacts are also observed at 3.11-3.15 A. Upon oxygenation of 1 at 193 K in coordinating solvents, UV-visible and (2)H and (19)F NMR spectroscopies revealed the presence of a reversibly formed dioxygen adduct, formulated as the heme-superoxo complex (S)(F(8)TPP)Fe(III)-(O(2)(-)) (2) (S = solvent) [(i) tetrahydrofuran (THF) solvent: UV-visible, 416 (Soret), 536 nm; (2)H NMR: delta(pyrrole) 8.9 ppm; (ii) EtCN solvent: UV-visible, 414 (Soret), 536 nm; (iii) acetone solvent: UV-visible, 416 (Soret), 537 nm; (2)H NMR: delta(pyrrole) 8.9 ppm]. Dioxygen-uptake manometry (THF, 193 K) revealed an O(2):1 oxygenation stoichiometry of 1.02:1, consistent with the heme-superoxo formulation of 2. Stopped-flow UV-visible spectrophotometry studies of the (F(8)TPP)Fe(II) (1)/O(2) reaction in EtCN and THF solvents were able to provide kinetic and thermodynamic insight into the reversible formation of 2 [(i) EtCN: Delta H degrees = -40 +/- 5 kJ/mol; Delta S degrees = -105 +/- 23 J/(K mol); k(1) = (5.57 +/- 0.04) x 10(3) M(-)(1) s(-)(1) (183 K); Delta H(++) = 38.6 +/- 0.2 kJ/mol; Delta S(++) = 42 +/- 1 J/(K mol); (ii) THF: Delta H* = -37.5 +/- 0.4 kJ/mol; Delta S* = -109 +/- 2 J/(K mol)]. The (F(8)TPP)Fe(II) (1)/O(2) reaction was also examined at reduced temperatures in noncoordinating solvents (toluene, CH(2)Cl(2)), where UV-visible and (2)H and (19)F NMR spectroscopies also revealed the presence of a reversibly formed adduct, formulated as the peroxo-bridged dinuclear complex [(F(8)TPP)Fe(III)](2)-(O(2)(2)(-)) (3) [CH(2)Cl(2): UV-visible, 414 (Soret), 535 nm; (2)H NMR, delta(pyrrole) 17.5 ppm]. Dioxygen-uptake spectrophotometric titrations revealed a stoichiometry of 2 (F(8)TPP)Fe(II) (1) per O(2) upon full formation of 3. Addition of a nitrogenous base, 4-(dimethylamino)pyridine, to a cold solution of 3 in dichloromethane gave rapid formation of the iron(IV)-oxo ferryl species (DMAP)(F(8)TPP)Fe(IV)==O (4), based upon UV-visible [417 (Soret), 541 nm] and (2)H NMR (delta(pyrrole) = 3.5 ppm) spectroscopic characterization. These detailed investigations into the O(2)-adducts and "ferryl" species formed from (F(8)TPP)Fe(II) (1) may be potentially important for a full understanding of our ongoing heme-copper oxidase model studies, which employ 1 or similar "...
Copper(I)-dioxygen interactions are of great interest due to their role in biological O2-processing as well as their importance in industrial oxidation processes. We describe here the study of systems which lead to new insights concerning the factors which govern Cu(II)-mu-eta2:eta2 (side-on) peroxo versus Cu(III)-bis-mu-oxo species formation. Drastic differences in O2-reactivity of Cu(I) complexes which differ only by a single -CH3 versus -H substituent on the central amine of the tridentate ligands employed are observed. [Cu(MeAN)]B(C6F5)4 (1) (MeAN = N,N,N',N',N'-pentamethyl-dipropylenetriamine) reacts with O2 at -80 degrees C to form almost exclusively the side-on peroxo complex [{CuII(MeAN)}2(O2)]2+ (3) in CH2Cl2, tetrahydrofuran, acetone, and diethyl ether solvents, as characterized by UV-vis and resonance Raman spectroscopies. In sharp contrast, [Cu(AN)]B(C6F5)4 (2) (AN = 3, 3'-iminobis(N,N-dimethyl-propylamine) can support either Cu2O2 structures in a strongly solvent-dependent manner. Extreme behavior is observed in CH2Cl2 solvent, where 1 reacts with O2 giving 3, while 2 forms exclusively the bis-mu-oxo species [{CuIII(AN)}2(O)2]2+ (4Oxo). Stopped-flow kinetics measurements also reveal significant variations in the oxygenation reactions of 1 versus 2, including the observations that 4Oxo forms much faster than does 3; the former decomposes quickly, while the latter is quite stable at 193 K. The solvent-dependence of the bis-mu-oxo versus side-on peroxo preference observed for 2 is opposite to that reported for other known copper(I) complexes; the factors which may be responsible for the unusual behavior of 1/O2 versus 2/O2 (possibly N-H hydrogen bonding in the AN chemistry) are suggested. The factors which affect bis-mu-oxo versus side-on peroxo formation continue to be of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.