Attention deficit hyperactivity disorder (ADHD) is a prevalent childhood psychiatric disorder, with a major genetic component. Here we present a GWAS meta-analysis of ADHD comprising 38,691 individuals with ADHD and 186,843 controls. We identified 27 genome-wide significant loci, which is more than twice the number previously reported. Fine-mapping risk loci highlighted 76 potential risk genes enriched in genes expressed in brain, particularly the frontal cortex, and in early brain development. Overall, ADHD was associated with several brain specific neuronal sub-types and especially midbrain dopaminergic neurons. In a subsample of 17,896 exome-sequenced individuals, we identified increased load of rare protein-truncating variants in cases for a set of risk genes enriched with likely causal common variants, suggesting implication of SORCS3 in ADHD by both common and rare variants. We found ADHD to be highly polygenic, with around seven thousand variants explaining 90% of the SNP heritability. Bivariate gaussian mixture modeling estimated that more than 90% of ADHD influencing variants are shared with other psychiatric disorders (autism, schizophrenia and depression) and phenotypes (e.g. educational attainment) when both concordant and discordant variants are considered. Additionally, we demonstrated that common variant ADHD risk was associated with impaired complex cognition such as verbal reasoning and a range of executive functions including attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.