Ripretinib (DCC-2618) was designed to inhibit the full spectrum of mutant KIT and PDGFRA kinases found in cancers and myeloproliferative neoplasms, particularly in gastrointestinal stromal tumors (GISTs), in which the heterogeneity of drug-resistant KIT mutations is a major challenge. Ripretinib is a ''switch-control'' kinase inhibitor that forces the activation loop (or activation ''switch'') into an inactive conformation. Ripretinib inhibits all tested KIT and PDGFRA mutants, and notably is a type II kinase inhibitor demonstrated to broadly inhibit activation loop mutations in KIT and PDGFRA, previously thought only achievable with type I inhibitors. Ripretinib shows efficacy in preclinical cancer models, and preliminary clinical data provide proof-of-concept that ripretinib inhibits a wide range of KIT mutants in patients with drug-resistant GISTs.
The study findings highlight the need to implement a comprehensive approach to increasing Australian nursing students' pressure injury prevention and management knowledge, as well as ensuring that these students have adequate experiences in clinical units, with a high focus on pressure injury prevention to raise their personal capability.
Eight competitive cyclists [mean peak oxygen consumption, (VO2(peak)) = 65 ml x min(-1) x kg(-1)] undertook two 60-min cycle ergometer time trials at 32 degrees C and 60% relative humidity. The time trials were split into two 30-min phases: a fixed-workload phase and a variable-workload phase. Each trial was preceded by ingestion of either a glycerol solution [1 g x kg(-1) body mass (BM) in a diluted carbohydrate (CHO)-electrolyte drink] or a placebo of equal volume (the diluted CHO-electrolyte drink). The total fluid intake in each trial was 22 ml x kg(-1) BM. A repeated-measures, double blind, cross over design with respect to glycerol was employed. Glycerol ingestion expanded body water by approximately 600 ml over the placebo treatment. Glycerol treatment significantly increased performance by 5% compared with the placebo group, as assessed by total work in the variable-workload phase (P < 0.04). There were no significant differences in rectal temperature, sweat rate or cardiac frequency between trials. Data indicate that the glycerol-induced performance increase did not result from plasma volume expansion and subsequently lower core temperature or lower cardiac frequencies at a given power output as previously proposed. However, during the glycerol trial, subjects maintained a higher power output without increased perception of effort or thermal strain.
Altiratinib (DCC-2701) was designed based on the rationale of engineering a single therapeutic agent able to address multiple hallmarks of cancer (1). Specifically, altiratinib inhibits not only mechanisms of tumor initiation and progression, but also drug resistance mechanisms in the tumor and microenvironment through balanced inhibition of MET, TIE2 (TEK), and VEGFR2 (KDR) kinases. This profile was achieved by optimizing binding into the switch control pocket of all three kinases, inducing type II inactive conformations. Altiratinib durably inhibits MET, both wild-type and mutated forms, in vitro and in vivo. Through its balanced inhibitory potency versus MET, TIE2, and VEGFR2, altiratinib provides an agent that inhibits three major evasive (re)vascularization and resistance pathways (HGF, ANG, and VEGF) and blocks tumor invasion and metastasis. Altiratinib exhibits properties amenable to oral administration and exhibits substantial blood-brain barrier penetration, an attribute of significance for eventual treatment of brain cancers and brain metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.