Epileptic encephalopathies are severe brain disorders with the epileptic component contributing to the worsening of cognitive and behavioral manifestations. Acquired epileptic aphasia (Landau-Kleffner syndrome, LKS) and continuous spike and waves during slow-wave sleep syndrome (CSWSS) represent rare and closely related childhood focal epileptic encephalopathies of unknown etiology. They show electroclinical overlap with rolandic epilepsy (the most frequent childhood focal epilepsy) and can be viewed as different clinical expressions of a single pathological entity situated at the crossroads of epileptic, speech, language, cognitive and behavioral disorders. Here we demonstrate that about 20% of cases of LKS, CSWSS and electroclinically atypical rolandic epilepsy often associated with speech impairment can have a genetic origin sustained by de novo or inherited mutations in the GRIN2A gene (encoding the N-methyl-D-aspartate (NMDA) glutamate receptor α2 subunit, GluN2A). The identification of GRIN2A as a major gene for these epileptic encephalopathies provides crucial insights into the underlying pathophysiology.
Complex cortical malformations associated with mutations in tubulin genes: TUBA1A, TUBA8, TUBB2B, TUBB3, TUBB5 and TUBG1 commonly referred to as tubulinopathies, are a heterogeneous group of conditions with a wide spectrum of clinical severity. Among the 106 patients selected as having complex cortical malformations, 45 were found to carry mutations in TUBA1A (42.5%), 18 in TUBB2B (16.9%), 11 in TUBB3 (10.4%), three in TUBB5 (2.8%), and three in TUBG1 (2.8%). No mutations were identified in TUBA8. Systematic review of patients' neuroimaging and neuropathological data allowed us to distinguish at least five cortical malformation syndromes: (i) microlissencephaly (n = 12); (ii) lissencephaly (n = 19); (iii) central pachygyria and polymicrogyria-like cortical dysplasia (n = 24); (iv) generalized polymicrogyria-like cortical dysplasia (n = 6); and (v) a 'simplified' gyral pattern with area of focal polymicrogyria (n = 19). Dysmorphic basal ganglia are the hallmark of tubulinopathies (found in 75% of cases) and are present in 100% of central pachygyria and polymicrogyria-like cortical dysplasia and simplified gyral malformation syndromes. Tubulinopathies are also characterized by a high prevalence of corpus callosum agenesis (32/80; 40%), and mild to severe cerebellar hypoplasia and dysplasia (63/80; 78.7%). Foetal cases (n = 25) represent the severe end of the spectrum and show specific abnormalities that provide insights into the underlying pathophysiology. The overall complexity of tubulinopathies reflects the pleiotropic effects of tubulins and their specific spatio-temporal profiles of expression. In line with previous reports, this large cohort further clarifies overlapping phenotypes between tubulinopathies and although current structural data do not allow prediction of mutation-related phenotypes, within each mutated gene there is an associated predominant pattern of cortical dysgenesis allowing some phenotype-genotype correlation. The core phenotype of TUBA1A and TUBG1 tubulinopathies are lissencephalies and microlissencephalies, whereas TUBB2B tubulinopathies show in the majority, centrally predominant polymicrogyria-like cortical dysplasia. By contrast, TUBB3 and TUBB5 mutations cause milder malformations with focal or multifocal polymicrogyria-like cortical dysplasia with abnormal and simplified gyral pattern.
Pyridoxal 5'-phosphate (PLP), the active form of vitamin B, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested. Whole-exome sequencing of two children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial), PROSC, which encodes a PLP-binding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified four additional children with biallelic PROSC mutations. Pre-treatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant lacking the PROSC homolog (ΔYggS) is pyridoxine sensitive; complementation with human PROSC restored growth whereas hPROSC encoding p.Leu175Pro, p.Arg241Gln, and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells, which is how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Although the mechanism involved is not fully understood, our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions.
Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a 'halo' of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.