Presence of the integrated endogenous banana streak virus (eBSV) in the B genome of plantain (AAB) is a major challenge for breeding and dissemination of hybrids. As the eBSV activates into infectious viral particles under stress, the progenitor Musa balbisiana and its derivants, having at least one B genome, cannot be used as parents for crop improvement. Here, we report a strategy to inactivate the eBSV by editing the virus sequences. The regenerated genome-edited events of Gonja Manjaya showed mutations in the targeted sites with the potential to prevent proper transcription or/and translational into functional viral proteins. Seventy-five percent of the edited events remained asymptomatic in comparison to the non-edited control plants under water stress conditions, confirming inactivation of eBSV into infectious viral particles. This study paves the way for the improvement of B genome germplasm and its use in breeding programs to produce hybrids that can be globally disseminated.
Banana Xanthomonas wilt disease, caused by Xanthomonas campestris pv. musacearum (Xcm), is a major threat to banana production in east Africa. All cultivated varieties of banana are susceptible to Xcm and only the progenitor species Musa balbisiana was found to be resistant. The molecular basis of susceptibility and resistance of banana genotypes to Xcm is currently unknown. Transcriptome analysis of disease resistant genotype Musa balbisiana and highly susceptible banana cultivar Pisang Awak challenged with Xcm was performed to understand the disease response. The number of differentially expressed genes (DEGs) was higher in Musa balbisiana in comparison to Pisang Awak. Genes associated with response to biotic stress were up-regulated in Musa balbisiana . The DEGs were further mapped to the biotic stress pathways. Our results suggested activation of both PAMP-triggered basal defense and disease resistance (R) protein-mediated defense in Musa balbisiana as early response to Xcm infection. This study reports the first comparative transcriptome profile of the susceptible and resistant genotype of banana during early infection with Xcm and provide insights on the defense mechanism in Musa balbisiana , which can be used for genetic improvement of commonly cultivated banana varieties.
Cassava is an important food crop with an average consumption of 50 kg/capita/year in Africa (FAO, 2018). The global cassava production stands at slightly over 11 tonnes per hectare. Over 63% of the 303 million tonnes produced globally in 2019 was from Africa (FAO, 2019). Despite being the leading region in cassava production, only 3000 tonnes of the produce are dedicated to non-food uses. The challenges associated with global fossil fuels
Drought is the leading cause of agricultural yield loss among all abiotic stresses, and the link between water deficit and phloem protein contents is relatively unexplored. Here we collected phloem exudates from Solanum lycopersicum leaves during periods of drought stress and recovery. Our analysis identified 2558 proteins, the most abundant of which were previously localized to the phloem. Independent of drought, enrichment analysis of the total phloem exudate protein profiles from all samples suggests that the protein content of phloem sap is complex, and includes proteins that function in chaperone systems, branched-chain amino acid synthesis, trehalose metabolism, and RNA silencing. We observed 169 proteins whose abundance changed significantly within the phloem sap, either during drought or recovery. Proteins that became significantly more abundant during drought include members of lipid metabolism, chaperone-mediated protein folding, carboxylic acid metabolism, abscisic acid signaling, cytokinin biosynthesis, and amino acid metabolism. Conversely, proteins involved in lipid signaling, sphingolipid metabolism, cell wall organization, carbohydrate metabolism, and a mitogen-activated protein kinase are decreased during drought. Our experiment has achieved an in-depth profiling of phloem sap protein contents during drought stress and recovery that supports previous findings and provides new evidence that multiple biological processes are involved in drought adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.