Lung adenocarcinoma (LUAD) is the most prevalent subtype of non‐small cell lung cancer. Despite the development of novel targeted and immune therapies, the 5‐year survival rate is still only 21%, indicating the need for more efficient treatment regimens. Lysine‐specific demethylase 1 (LSD1) is an epigenetic eraser that modifies histone 3 methylation status, and is highly overexpressed in LUAD. Using representative human cell culture systems and two autochthonous transgenic mouse models, we investigated inhibition of LSD1 as a novel therapeutic option for treating LUAD. The reversible LSD1 inhibitor HCI‐2509 significantly reduced cell growth with an IC 50 of 0.3–5 μm in vitro, which was linked to an enhancement of histone 3 lysine methylation. Most importantly, growth arrest, as well as inhibition of the invasion capacities, was independent of the underlying driver mutations. Subsequent expression profiling revealed that the cell cycle and replication machinery were prominently affected after LSD1 inhibition. In addition, our data provide evidence that LSD1 blockade significantly interferes with EGFR downstream signaling. Finally, our in vitro results were confirmed by preclinical therapeutic approaches, including the use of two autochthonous transgenic LUAD mouse models driven by either EGFR or KRAS mutations. Importantly, LSD1 inhibition resulted in significantly lower tumor formation and a strong reduction in tumor progression, which were independent of the underlying mutational background of the mouse models. Hence, our findings provide substantial evidence indicating that tumor growth of LUAD can be markedly decreased by HCI‐2509 treatment, suggesting its use as a single agent maintenance therapy or combined therapeutical application in novel concerted drug approaches.
Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1–associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.
Microglia diversity emerges from interactions between intrinsic genetic programs and environment-derived signals, but how these processes unfold and interact in the developing brain remains unclear. Here, we show that radial glia progenitor-expressed integrin beta 8 activates microglia-expressed TGFB1, permitting microglial development. Domain-restricted deletion of Itgb8 in these progenitors establishes complementary domains of developmentally arrested dysmature microglia and homeostatic microglia that persist into adulthood. In the absence of autocrine TGFB1 signaling, we find that microglia adopt a similar reactive microglial phenotype, leading to astrogliosis and neuromotor symptoms almost identical to Itgb8 mutant mice. By comparing mice with genetic deletions in critical components downstream of Itgb8, we show that non-canonical (Smad-independent) signaling partially suppresses the dysmature microglia phenotype, associated neuromotor dysfunction and expression of disease-associated genes, providing compelling evidence for the adoption of microglial developmental signaling pathways in the context of injury or disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.