Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer’s disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a “genetic wasteland”, and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.
In dystrophin-deficient mdx mice, expression of Hmox1 in limb skeletal muscles and diaphragm is higher than in wild-type animals, being consistently elevated from 8 up to 52 weeks, both in myofibers and inflammatory leukocytes. Accordingly, HO-1 expression is induced in muscles of DMD patients. Pharmacological inhibition of HO-1 activity or genetic ablation of Hmox1 aggravates muscle damage and inflammation in mdx mice. Double knockout animals (Hmox1mdx) demonstrate impaired exercise capacity in comparison with mdx mice. Interestingly, in contrast to the effect observed in muscle fibers, in dystrophin-deficient muscle satellite cells (SCs) expression of Hmox1 is decreased, while MyoD, myogenin, and miR-206 are upregulated compared with wild-type counterparts. Mdx SCs demonstrate disturbed and enhanced differentiation, which is further intensified by Hmox1 deficiency. RNA sequencing revealed downregulation of Atf3, MafK, Foxo1, and Klf2 transcription factors, known to activate Hmox1 expression, as well as attenuation of nitric oxide-mediated cGMP-dependent signaling in mdx SCs. Accordingly, treatment with NO-donor induces Hmox1 expression and inhibits differentiation. Finally, differentiation of mdx SCs was normalized by CO, a product of HO-1 activity. Innovation and Conclusions: HO-1 is induced in DMD, and HO-1 inhibition aggravates DMD pathology. Therefore, HO-1 can be considered a therapeutic target to alleviate this disease. Antioxid. Redox Signal. 00, 000-000.
Aims: Nuclear factor E2-related factor 2 (Nrf2), a key cytoprotective transcription factor, regulates also proangiogenic mediators, interleukin-8 and heme oxygenase-1 (HO-1). However, hitherto its role in blood vessel formation was modestly examined. Particularly, although Nrf2 was shown to affect hematopoietic stem cells, it was not tested in bone marrow-derived proangiogenic cells (PACs). Here we investigated angiogenic properties of Nrf2 in PACs, endothelial cells, and inflammation-related revascularization. Results: Treatment of endothelial cells with angiogenic cytokines increased nuclear localization of Nrf2 and induced expression of HO-1. Nrf2 activation stimulated a tube network formation, while its inhibition decreased angiogenic response of human endothelial cells, the latter effect reversed by overexpression of HO-1. Moreover, lack of Nrf2 attenuated survival, proliferation, migration, and angiogenic potential of murine PACs and affected angiogenic transcriptome in vitro. Additionally, angiogenic capacity of PAC Nrf2
Aims: Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that can be down-regulated in diabetes. Its importance for mature endothelium has been described, but its role in proangiogenic progenitors is not well known. We investigated the effect of HO-1 on the angiogenic potential of bone marrow-derived cells (BMDCs) and on blood flow recovery in ischemic muscle of diabetic mice. BMDCs revealed the attenuated up-regulation of proangiogenic genes in response to hypoxia. Heterozygous HO-1 +/ -diabetic mice subjected to hind limb ischemia exhibited reduced local expression of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), stromal cell-derived factor 1 (SDF-1), VEGFR-1, VEGFR-2, and CXCR-4. This was accompanied by impaired revascularization of ischemic muscle, despite a strong mobilization of bone marrow-derived proangiogenic progenitors (Sca-1 + CXCR-4 + ) into peripheral blood. Blood flow recovery could be rescued by local injections of conditioned media harvested from BMDCs, but not by an injection of cultured BMDCs. Innovation: This is the first report showing that HO-1 haploinsufficiency impairs tissue revascularization in diabetes and that proangiogenic in situ response, not progenitor cell mobilization, is important for blood flow recovery. Conclusions: HO-1 is necessary for a proper proangiogenic function of BMDCs. A low level of HO-1 in hyperglycemic mice decreases restoration of perfusion in ischemic muscle, which can be rescued by a local injection of conditioned media from cultured
Heme oxygenase-1 (HO-1, Hmox1) regulates viability, proliferation, and differentiation of many cell types; hence, it may affect regeneration of injured skeletal muscle. Here, we injected cardiotoxin into gastrocnemius muscle of Hmox1 and Hmox1 animals and analyzed cellular response after muscle injury, focusing on muscle satellite cells (SCs), inflammatory reaction, fibrosis, and formation of new blood vessels. HO-1 is strongly induced after muscle injury, being expressed mostly in the infiltrating leukocytes (CD45 cells), including macrophages (F4/80 cells). Lack of HO-1 augments skeletal muscle injury, evidenced by increased creatinine kinase and lactate dehydrogenase, as well as expression of monocyte chemoattractant protein-1, IL-6, IL-1β, and insulin-like growth factor-1. This, together with disturbed proportion of M1/M2 macrophages, accompanied by enhanced formation of arterioles, may be responsible for shift of Hmox1 myofiber size distribution toward larger one. Importantly, HO-1-deficient SCs are prone to activation and have higher proliferation on injury. This effect can be partially mimicked by stimulation of Hmox1 SCs with monocyte chemoattractant protein-1, IL-6, IL-1β, and is associated with increased MyoD expression, suggesting that Hmox1 SCs are shifted toward more differentiated myogenic population. However, multiple rounds of degeneration/regeneration in conditions of HO-1 deficiency may lead to exhaustion of SC pool, and the number of SCs is decreased in old Hmox1 mice. In summary, HO-1 modulates muscle repair mechanisms preventing its uncontrolled acceleration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.