• Proteinuria and elevated markers of complement activation at TMA diagnosis are associated with poor outcome.• Clinical interventions should be considered in HSCT patients with these high-risk features at the time TMA is diagnosed.Transplant-associated thrombotic microangiopathy (TMA) leads to generalized endothelial dysfunction that can progress to multiorgan injury, and severe cases are associated with poor outcomes after hematopoietic stem cell transplantation (HSCT). Identifying patients at highest risk for severe disease is challenging. We prospectively evaluated 100 consecutive HSCT recipients to determine the incidence of moderate and severe TMA and factors associated with poor overall outcomes. Thirty-nine subjects (39%) met previously published criteria for TMA. Subjects with TMA had a significantly higher nonrelapse mortality (43.6% vs 7.8%, P < .0001) at 1 year post-HSCT compared with those without TMA. Elevated lactate dehydrogenase, proteinuria on routine urinalysis, and hypertension were the earliest markers of TMA. Proteinuria (>30 mg/dL) and evidence of terminal complement activation (elevated sC5b-9) in the blood at the time of TMA diagnosis were associated with very poor survival (<20% at 1 year), whereas all TMA subjects without proteinuria and a normal sC5b-9 serum concentration survived (P < .01). Based on these prospective observations, we conclude that severe TMA occurred in 18% of HSCT recipients in our cohort and propose an algorithm to identify the highest-risk patients who might benefit from prompt clinical interventions. (Blood. 2014;124(4):645-653)
Hematopoietic stem cell transplantation (HSCT)-associated thrombotic microangiopathy (TA-TMA) is now a well-recognized and potentially severe complication of HSCT that carries a high risk of death. In those who survive, TA-TMA may be associated with long-term morbidity and chronic organ injury. Recently, there have been new insights into the incidence, pathophysiology, and management of TA-TMA. Specifically, TA-TMA can manifest as a multi-system disease occurring after various triggers of small vessel endothelial injury, leading to subsequent tissue damage in different organs. While the kidney is most commonly affected, TA-TMA involving organs such as the lung, bowel, heart, and brain is now known to have specific clinical presentations. We now review the most up-to-date research on TA-TMA, focusing on the pathogenesis of endothelial injury, the diagnosis of TA-TMA affecting the kidney and other organs, and new clinical approaches to the management of this complication after HSCT.
The inaccessibility of living bone marrow hampers the study of its pathophysiology under myelotoxic stress induced by drugs, radiation or genetic mutations. Here, we show that a vascularized human bone-marrow-on-a-chip supports the differentiation and maturation of multiple blood-cell lineages over 4 weeks while improving CD34+ cell maintenance, and that it recapitulates aspects of marrow injury, including myeloerythroid toxicity after clinically relevant exposures to chemotherapeutic drugs and ionizing radiation as well as marrow recovery after drug-induced myelosuppression. The chip comprises a fluidic channel filled with a fibrin gel in which CD34 + cells and bone-marrow-derived stromal cells are co-cultured, a parallel channel lined by human vascular endothelium and perfused with culture medium, and a porous membrane separating the two channels. We also show that bone-marrow chips containing cells from patients with the rare genetic disorder Shwachman–Diamond syndrome reproduced key haematopoietic defects and led to the discovery of a neutrophil-maturation abnormality. As an in vitro model of haematopoietic dysfunction, the bone-marrow-on-a-chip may serve as a human-specific alternative to animal testing for the study of bone-marrow pathophysiology.
Overactivated complement is a high-risk feature in HSCT recipients with transplant associated thrombotic microangiopathy (TA-TMA), and untreated patients have dismal outcomes. We present our experience of 64 pediatric HSCT recipients with high risk TA-TMA and multi-organ injury treated with the complement blocker eculizumab. We demonstrate significant improvement in 1y post-HSCT survival to 66% in treated patients from our previously reported untreated cohort with same high-risk TA-TMA features that had 1y post-HSCT survival of 16.7%. Responding patients benefited from a brief but intensive eculizumab therapy course using PK/PD guided dosing, requiring a median of 11 doses of eculizumab (IQR 7-20). Therapy was discontinued due to resolution of TA-TMA at a median of 66 days (IQR 41-110). Subjects with higher complement activation measured by elevated blood sC5b-9 at the start of therapy were less likely to respond to treatment (OR =0.15, p-value 0.0014), and required more doses of eculizumab [r = 0.43, p-value = 0.0004]. Patients with intestinal bleeding had the fastest eculizumab clearance, required the highest number of eculizumab doses (20 vs 9, p=0.0015), and had lower 1y survival (44% vs 78%, p=0.01). Over 70% of survivors had proteinuria on long term follow up. The best GFR recovery in survivors was a median 20% lower (IQR 7.3-40.3%) than their pre-HSCT GFR. In summary, complement blockade with eculizumab is an effective therapeutic strategy for high risk TA-TMA, but some patients with severe disease lack a complete response, prompting us to propose early intervention strategies and search for additional targetable endothelial injury pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.