RNAComposer is a fully automated, web-interfaced system for RNA 3D structure prediction, freely available at http://rnacomposer.cs.put.poznan.pl/ and http://rnacomposer.ibch.poznan.pl/. Its main components are: manually curated database of RNA 3D structure elements, highly efficient computational engine and user-friendly web application. In this paper, we demonstrate how the latest additions to the system allow the user to significantly affect the process of 3D model composition on several computational levels. Although in general our method is based on the knowledge of secondary structure topology, currently the RNAComposer offers a choice of six incorporated programs for secondary structure prediction. It also allows to apply a conditional search in the database of 3D structure elements and introduce user-provided elements into the final 3D model. This new functionality contributes to a significant improvement of the predicted 3D model reliability and it facilitates a better model adjustment to the experimental data. This is exemplified based on the RNAComposer application for modelling of the 3D structures of precursors of the miR160 family members.
These findings provide further evidence on the role of genetic variation in the etiology of breast cancer. Fine mapping will be needed to identify causal variants and to determine their functional effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.