Psoriasis is a chronic inflammatory skin disease in which Th17 cells play a crucial role. Since indigenous gut microbiota influences the development and reactivity of immune cells, we analyzed the link among microbiota, T cells and the formation of psoriatic lesions in the imiquimod-induced murine model of psoriasis. To explore the role of microbiota, we induced skin inflammation in germ-free (GF), broad-spectrum antibiotic (ATB)-treated or conventional (CV) BALB/c and C57BL/6 mice. We found that both mice reared in GF conditions for several generations and CV mice treated with ATB were more resistant to imiquimod-induced skin inflammation than CV mice. The ATB treatment dramatically changed the diversity of gut bacteria, which remained stable after subsequent imiquimod application; ATB treatment resulted in a substantial increase in the order Lactobacillales and a significant decrease in Coriobacteriales and Clostridiales. Moreover, as compared to CV mice, imiquimod induced a lower degree of local and systemic Th17 activation in both GF and ATB-treated mice. These findings suggest that gut microbiota control imiquimod-induced skin inflammation by altering the T cell response.
Psoriasis is a chronic inflammatory skin disease, whose pathogenesis involves dysregulated interplay among immune cells, keratinocytes and environmental triggers, including microbiota. Bacterial and fungal dysbiosis has been recently associated with several chronic immune-mediated diseases including psoriasis. In this comprehensive study, we investigated how different sampling sites and methods reflect the uncovered skin microbiota composition. After establishing the most suitable approach, we further examined correlations between bacteria and fungi on the psoriatic skin. We compared microbiota composition determined in the same sample by sequencing two distinct hypervariable regions of the 16S rRNA gene. We showed that using the V3V4 region led to higher species richness and evenness than using the V1V2 region. In particular, genera, such as Staphylococcus and Micrococcus were more abundant when using the V3V4 region, while Planococcaceae , on the other hand, were detected only by the V1V2 region. We performed a detailed analysis of skin microbiota composition of psoriatic lesions, unaffected psoriatic skin, and healthy control skin from the back and elbow. Only a few discriminative features were uncovered, mostly specific for the sampling site or method (swab, scraping, or biopsy). Swabs from psoriatic lesions on the back and the elbow were associated with increased abundance of Brevibacterium and Kocuria palustris and Gordonia , respectively. In the same samples from psoriatic lesions, we found a significantly higher abundance of the fungus Malassezia restricta on the back, while Malassezia sympodialis dominated the elbow mycobiota. In psoriatic elbow skin, we found significant correlation between occurrence of Kocuria , Lactobacillus , and Streptococcus with Saccharomyces , which was not observed in healthy skin. For the first time, we showed here a psoriasis-specific correlation between fungal and bacterial species, suggesting a link between competition for niche occupancy and psoriasis. However, it still remains to be elucidated whether observed microbial shift and specific inter-kingdom relationship pattern are of primary etiological significance or secondary to the disease.
Psoriatic patients have altered microbiota, both in the intestine and on the skin. It is not clear, however, whether this is a cause or consequence of the disease. In this study, using an experimental mouse model of psoriasis induced by imiquimod (IMQ), we show that oral treatment with a broad spectrum of antibiotics (MIX) or metronidazole (MET) alone mitigates the severity of skin inflammation through downregulation of Th17 immune response in conventional mice. Since some antibiotics, including MET, can influence immune system reactivity, we also evaluated the effect of MIX in the same model under germ-free (GF) conditions. GF mice treated with MET did not show milder signs of imiquimod-induced skin inflammation (IISI) which supports the conclusion that the therapeutic effect is mediated by changes in microbiota composition. Moreover, compared to controls, mice treated with MIX had a significantly higher abundance of the genus Lactobacillus in the intestine and on the skin. Mice treated with MET had a significantly higher abundance of the genera Bifidobacterium and Enterococcus both on the skin and in the intestine and of Parabacteroides distasonis in the intestine. Additionally, GF mice and mice monocolonized with either Lactobacillus plantarum or segmented filamentous bacteria (SFB) were more resistant to IISI than conventional mice. Interestingly, compared to GF mice, IMQ induced a higher degree of systemic Th17 activation in mice monocolonized with SFB but not with L. plantarum . The present findings provide evidence that intestinal and skin microbiota directly regulates IISI and emphasizes the importance of microbiota in the pathogenesis of psoriasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.