Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.
Psychiatric disorders show heterogeneous symptoms and trajectories, with current nosology not accurately reflecting their molecular etiology and the variability and symptomatic overlap within and between diagnostic classes. This heterogeneity impedes timely and targeted treatment. Our study aimed to identify psychiatric patient clusters that share clinical and genetic features and may profit from similar therapies. We used high-dimensional data clustering on deep clinical data to identify transdiagnostic groups in a discovery sample (N = 1250) of healthy controls and patients diagnosed with depression, bipolar disorder, schizophrenia, schizoaffective disorder, and other psychiatric disorders. We observed five diagnostically mixed clusters and ordered them based on severity. The least impaired cluster 0, containing most healthy controls, showed general well-being. Clusters 1–3 differed predominantly regarding levels of maltreatment, depression, daily functioning, and parental bonding. Cluster 4 contained most patients diagnosed with psychotic disorders and exhibited the highest severity in many dimensions, including medication load. Depressed patients were present in all clusters, indicating that we captured different disease stages or subtypes. We replicated all but the smallest cluster 1 in an independent sample (N = 622). Next, we analyzed genetic differences between clusters using polygenic scores (PGS) and the psychiatric family history. These genetic variables differed mainly between clusters 0 and 4 (prediction area under the receiver operating characteristic curve (AUC) = 81%; significant PGS: cross-disorder psychiatric risk, schizophrenia, and educational attainment). Our results confirm that psychiatric disorders consist of heterogeneous subtypes sharing molecular factors and symptoms. The identification of transdiagnostic clusters advances our understanding of the heterogeneity of psychiatric disorders and may support the development of personalized treatments.
Factorial dimensions and neurobiological underpinnings of formal thought disorders (FTD) have been extensively investigated in schizophrenia spectrum disorders (SSD). However, FTD are also highly prevalent in other disorders. Still, there is a lack of knowledge about transdiagnostic, structural brain correlates of FTD. In N = 1071 patients suffering from DSM-IV major depressive disorder, bipolar disorder, or SSD, we calculated a psychopathological factor model of FTD based on the SAPS and SANS scales. We tested the association of FTD dimensions with 3 T MRI measured gray matter volume (GMV) and white matter fractional anisotropy (FA) using regression and interaction models in SPM12. We performed post hoc confirmatory analyses in diagnostically equally distributed, age- and sex-matched sub-samples to test whether results were driven by diagnostic categories. Cross-validation (explorative and confirmatory) factor analyses revealed three psychopathological FTD factors: disorganization, emptiness, and incoherence. Disorganization was negatively correlated with a GMV cluster comprising parts of the middle occipital and angular gyri and positively with FA in the right posterior cingulum bundle and inferior longitudinal fascicle. Emptiness was negatively associated with left hippocampus and thalamus GMV. Incoherence was negatively associated with FA in bilateral anterior thalamic radiation, and positively with the hippocampal part of the right cingulum bundle. None of the gray or white matter associations interacted with diagnosis. Our results provide a refined mapping of cross-disorder FTD phenotype dimensions. For the first time, we demonstrated that their neuroanatomical signatures are associated with language-related gray and white matter structures independent of diagnosis.
The Covid-19 pandemic resulted in repeated, prolonged restrictions in daily life. Social distancing policies as well as health anxiety are thought to lead to mental health impairment. However, there is lack of longitudinal data identifying at-risk populations particularly vulnerable for elevated Covid-19-related distress. We collected data of N =1268 participants ( n =622 healthy controls (HC), and n =646 patients with major depression, bipolar disorder, schizophrenia or schizoaffective disorder) at baseline before (2014-2018) and during (April-May 2020) the first lockdown in Germany. We obtained information on Covid-19 restrictions (number and subjective impact of Covid-19 events), and Covid-19-related distress (i.e., subjective fear and isolation). Using multiple linear regression models including trait variables and individual Covid-19 impact, we sought to predict Covid-19-related distress. HC and patients reported similar numbers of Covid-19-related events, and similar subjective impact rating. They did not differ in Covid-19-related subjective fear. Patients reported significantly higher subjective isolation. 30.5% of patients reported worsened self-rated symptoms since the pandemic. Subjective fear in all participants was predicted by trait anxiety (STAI-T), conscientiousness (NEO-FFI), Covid-19 impact, and sex. Subjective isolation in HC was predicted by social support (FSozu), Covid-19 impact, age, and sex; in patients, it was predicted by social support and Covid-19 impact. Our data shed light on differential effects of the pandemic in psychiatric patients and HC. Low social support, low conscientiousness and high trait anxiety are associated with elevated distress during the pandemic. These variables might be valuable for the creation of risk profiles of Covid-19-related distress for direct translation into clinical practice.
Introduction More than a century of research on the neurobiological underpinnings of major psychiatric disorders (major depressive disorder [MDD], bipolar disorder [BD], schizophrenia [SZ], and schizoaffective disorder [SZA]) has been unable to identify diagnostic markers. An alternative approach is to study dimensional psychopathological syndromes that cut across categorical diagnoses. The aim of the current study was to identify gray matter volume (GMV) correlates of transdiagnostic symptom dimensions. Methods We tested the association of 5 psychopathological factors with GMV using multiple regression models in a sample of N = 1069 patients meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for MDD (n = 818), BD (n = 132), and SZ/SZA (n = 119). T1-weighted brain images were acquired with 3-Tesla magnetic resonance imaging and preprocessed with CAT12. Interactions analyses (diagnosis × psychopathological factor) were performed to test whether local GMV associations were driven by DSM-IV diagnosis. We further tested syndrome specific regions of interest (ROIs). Results Whole brain analysis showed a significant negative association of the positive formal thought disorder factor with GMV in the right middle frontal gyrus, the paranoid-hallucinatory syndrome in the right fusiform, and the left middle frontal gyri. ROI analyses further showed additional negative associations, including the negative syndrome with bilateral frontal opercula, positive formal thought disorder with the left amygdala-hippocampus complex, and the paranoid-hallucinatory syndrome with the left angular gyrus. None of the GMV associations interacted with DSM-IV diagnosis. Conclusions We found associations between psychopathological syndromes and regional GMV independent of diagnosis. Our findings open a new avenue for neurobiological research across disorders, using syndrome-based approaches rather than categorical diagnoses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.