In late summer 1999, an outbreak of human encephalitis occurred in the northeastern United States that was concurrent with extensive mortality in crows (Corvus species) as well as the deaths of several exotic birds at a zoological park in the same area. Complete genome sequencing of a flavivirus isolated from the brain of a dead Chilean flamingo (Phoenicopterus chilensis), together with partial sequence analysis of envelope glycoprotein (E-glycoprotein) genes amplified from several other species including mosquitoes and two fatal human cases, revealed that West Nile (WN) virus circulated in natural transmission cycles and was responsible for the human disease. Antigenic mapping with E-glycoprotein-specific monoclonal antibodies and E-glycoprotein phylogenetic analysis confirmed these viruses as WN. This North American WN virus was most closely related to a WN virus isolated from a dead goose in Israel in 1998.
To determine the importance of dengue 2 virus (DEN2V) envelope (E) protein glycosylation, virus mutants in one or both of the N-linked glycosylation motifs were prepared. We found that while the E2 mutant virus (N153Q) replicated in mammalian and mosquito cells, the E1 (N67Q) and E1/2 (N67Q and N153Q) mutant viruses were unable to grow in mammalian cells. Infection of C6/36 mosquito cells with either the E1 or E1/2 mutants resulted in the introduction of a compensatory mutation, K64N, restoring glycosylation in the area. All mutants replicated similarly in inoculated Aedes aegypti mosquitoes, with no change in their mutations. These results suggest that N-linked glycosylation of the E protein is not necessary for DEN2V replication in mosquitoes, however N-linked glycosylation at amino acid N67 (or nearby N64) is critical for the survival of the virus in either mammalian or insect cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.