The efficacy of many antibiotics decreases with increasing bacterial density, a phenomenon called the ‘inoculum effect' (IE). This study reveals that, for ribosome-targeting antibiotics, IE is due to bistable inhibition of bacterial growth, which reduces the efficacy of certain treatment frequencies.
Fig. 2. (A)Interaction web of top-down and bottom-up effects in the eelgrass study system. The top predator is the sea otter (E. lutris), the mesopredators are crabs (Cancer spp. and Pugettia producta), the epiphyte mesograzers are primarily an isopod (I. resecata) and a sea slug (P. taylori), and algal epiphyte competitors of eelgrass primarily consist of chain-forming diatoms, and the red alga Smithora naiadum. Solid arrows indicate direct effects, dashed arrows indicate indirect effects, and the plus and minus symbols indicate positive and/or negative effects on trophic guilds and eelgrass condition. C, competitive interaction; T, trophic interaction. (Original artwork by A. C. Hughes.) (B-E) Survey results testing for the effects of sea otter density on eelgrass bed community properties (Tables S2 and S3). Elkhorn Slough (sea otters present and high nutrients) eelgrass beds (n = 4) are coded in red, and the Tomales Bay reference site (no sea otters, low nutrients) beds (n = 4) are coded in blue. (B) Crab biomass and size structure of two species of Cancer crabs; (C) grazer biomass per shoot and large grazer density; (D) algal epiphyte loading; and (E) aboveground and belowground eelgrass biomass. DW, dry weight; FW, fresh weight.
Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is an effective immunotherapy for B-cell malignancies but has failed in some solid tumors clinically. Intracerebral tumors may pose challenges that are even more significant. In order to devise a treatment strategy for patients with glioblastoma (GBM), we evaluated CARs as a monotherapy in a murine model of GBM. CARs exhibited poor expansion and survival in circulation and failed to treat syngeneic and orthotopic gliomas. We hypothesized that CAR engraftment would benefit from host lymphodepletion prior to immunotherapy and that this might be achievable by using temozolomide (TMZ), which is standard treatment for these patients and has lymphopenia as its major side effect. We modelled standard of care temozolomide (TMZSD) and dose-intensified TMZ (TMZDI) in our murine model. Both regimens are clinically approved and provide similar efficacy. Only TMZDI pretreatment prompted dramatic CAR proliferation and enhanced persistence in circulation compared to treatment with CARs alone or TMZSD + CARs. Bioluminescent imaging revealed that TMZDI + CARs induced complete regression of 21-day established brain tumors, which correlated with CAR abundance in circulation. Accordingly, TMZDI + CARs significantly prolonged survival and led to long-term survivors. These findings are highly consequential, as it suggests that GBM patients may require TMZDI as first line chemotherapy prior to systemic CAR infusion to promote CAR engraftment and antitumor efficacy. On this basis, we have initiated a phase I trial in patients with newly diagnosed GBM incorporating TMZDI as a preconditioning regimen prior to CAR immunotherapy (NCT02664363).
Median survival for glioblastoma (GBM) remains <15 months. Human cytomegalovirus (CMV) antigens have been identified in GBM but not normal brain, providing an unparalleled opportunity to subvert CMV antigens as tumor-specific immunotherapy targets. A recent trial in recurrent GBM patients demonstrated the potential clinical benefit of adoptive T-cell therapy (ATCT) of CMV phosphoprotein 65 (pp65)-specific T cells. However, ex vivo analyses from this study found no change in the capacity of CMV pp65-specific T cells to gain multiple effector functions or polyfunctionality, which has been associated with superior antitumor efficacy. Previous studies have shown that dendritic cells (DC) could further enhance tumor-specific CD8 þ T-cell polyfunctionality in vivo when administered as a vaccine. Therefore, we hypothesized that vaccination with CMV pp65 RNA-loaded DCs would enhance the frequency of polyfunctional CMV pp65-specific CD8 þ T cells after ATCT. Here, we report prospective results of a pilot trial in which 22 patients with newly diagnosed GBM were initially enrolled, of which 17 patients were randomized to receive CMV pp65-specific T cells with CMV-DC vaccination (CMV-ATCT-DC) or saline (CMV-ATCT-saline). Patients who received CMV-ATCT-DC vaccination experienced a significant increase in the overall frequencies of IFNg þ , TNFa þ , and CCL3 þ polyfunctional, CMV-specific CD8 þ T cells. These increases in polyfunctional CMV-specific CD8 þ T cells correlated (R ¼ 0.7371, P ¼ 0.0369) with overall survival, although we cannot conclude this was causally related. Our data implicate polyfunctional T-cell responses as a potential biomarker for effective antitumor immunotherapy and support a formal assessment of this combination approach in a larger randomized study. Significance: A randomized pilot trial in patients with GBM implicates polyfunctional T-cell responses as a biomarker for effective antitumor immunotherapy. Cancer Res; 78(1); 256-64.Ó2017 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.