Animal models are powerful tools to analyze the mechanism of the induction of human breast cancer. Here we report a detailed analysis of mammary tumor progression in one mouse model of breast cancer caused by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium, and its comparison to human breast tumors. In PyMT mice, four distinctly identifiable stages of tumor progression from premalignant to malignant stages occur in a single primary tumor focus and this malignant transition is followed by a high frequency of distant metastasis. These stages are comparable to human breast diseases classified as benign or in situ proliferative lesions to invasive carcinomas. In addition to the morphological similarities with human breast cancer, the expression of biomarkers in PyMT-induced tumors is also consistent with those associated with poor outcome in humans. These include a loss of estrogen and progesterone receptors as well as integrin-beta1 expression and the persistent expression of ErbB2/Neu and cyclinD1 in PyMT-induced tumors as they progress to the malignant stage. An increased leukocytic infiltration was also closely associated with the malignant transition. This study demonstrates that the PyMT mouse model is an excellent one to understand the biology of tumor progression in humans.
The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor ␥ (PPAR␥) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR␥ induces hepatic steatosis, and liganded PPAR␥ promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPAR␥ function, transactivation, expression, and promoter activity. PPAR␥ transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB-and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix ( The cyclin-dependent kinase holoenzymes are a family of serine/threonine kinases that play a pivotal role in controlling progression through the cell cycle (38,47). Dysregulation of the cell cycle control apparatus is an almost uniform aberration in tumorigenesis (48). The cyclins encode regulatory subunits of the kinases which phosphorylate specific proteins, including the retinoblastoma (pRB) protein, to promote transition through specific cell cycle checkpoints (47, 57). Cyclin D1 plays a pivotal role in G 1 /S phase cell cycle progression in fibroblasts and is rate limiting in growth factor-or estrogen-induced mammary epithelial cell proliferation (29, 67). Cyclin D1 overexpression is found in Ͼ30% of human breast cancers, correlating with poor prognosis (23). Several different oncogenic signals induce cyclin D1 expression, including mutations of the Ras and Wnt/APC/-catenin pathway (2, 49). Mammary-targeted expression of cyclin D1 is sufficient for the induction of mammary adenocarcinoma, and cyclin D1 Ϫ/Ϫ mice are resistant to ErbB2-induced tumorigenesis (53,64).In addition to binding cyclin-dependent kinases 4 and 6 (cdk4 and cdk6) and pRB, cyclin D1 forms physical associations with P/CAF (p300/CBP-associated factor), Myb, MyoD, and the cyclin D1 myb-like binding protein (DMP1) (16,20,31,39). Binding of cyclin D1 to the estrogen receptor alpha (ER␣) enhances ligand-independent reporter gene activity, and liganded androgen receptor reporter gene activity is inhibited by cyclin D1 (33, 39, 68). The in vivo or genetic evidence indicating a requirement for cyclin D1 in nuclear receptor function remained to be determined. The peroxisome proliferator-activator receptors, including PPAR␣, PPAR␥, and PPAR␦, are ligand-activated nuclear receptors (42). Their modular structure resembles those of other nuclear hormone receptors with N-terminal AF-1, a DNA binding domain, and a carboxyl-terminal ligand-binding domain (LBD). PPAR␥ was cloned as a transcription factor involved in fat cell differentiation and is required for the induction of adipocyte differentiation (41, 51). Adenoviral delivery of PPAR␥ to the livers of mice induces hepatic steatosis, consistent with an important role for PPAR␥ in hepatocellular lipid biosynthesis (65). The PPAR␥ ligands include eicosanoids, such as 15-deoxy-⌬12,14-prostaglandin J2 (15d-PGJ 2 ), and synthetic ligands of the thiazolidinedione (TZD) class. PPAR␥ ...
IntroductionMetastasis of breast cancer is the main cause of death in patients. Previous genome-wide studies have identified gene-expression patterns correlated with cancer patient outcome. However, these were derived mostly from whole tissue without respect to cell heterogeneity. In reality, only a small subpopulation of invasive cells inside the primary tumor is responsible for escaping and initiating dissemination and metastasis. When whole tissue is used for molecular profiling, the expression pattern of these cells is masked by the majority of the noninvasive tumor cells. Therefore, little information is available about the crucial early steps of the metastatic cascade: migration, invasion, and entry of tumor cells into the systemic circulation.MethodsIn the past, we developed an in vivo invasion assay that can capture specifically the highly motile tumor cells in the act of migrating inside living tumors. Here, we used this assay in orthotopic xenografts of human MDA-MB-231 breast cancer cells to isolate selectively the migratory cell subpopulation of the primary tumor for gene-expression profiling. In this way, we derived a gene signature specific to breast cancer migration and invasion, which we call the Human Invasion Signature (HIS).ResultsUnsupervised analysis of the HIS shows that the most significant upregulated gene networks in the migratory breast tumor cells include genes regulating embryonic and tissue development, cellular movement, and DNA replication and repair. We confirmed that genes involved in these functions are upregulated in the migratory tumor cells with independent biological repeats. We also demonstrate that specific genes are functionally required for in vivo invasion and hematogenous dissemination in MDA-MB-231, as well as in patient-derived breast tumors. Finally, we used statistical analysis to show that the signature can significantly predict risk of breast cancer metastasis in large patient cohorts, independent of well-established prognostic parameters.ConclusionsOur data provide novel insights into, and reveal previously unknown mediators of, the metastatic steps of invasion and dissemination in human breast tumors in vivo. Because migration and invasion are the early steps of metastatic progression, the novel markers that we identified here might become valuable prognostic tools or therapeutic targets in breast cancer.
The nuclear receptor pregnane X receptor (PXR) is activated by a range of xenochemicals, including chemotherapeutic drugs, and has been suggested to play a role in the development of tumor cell resistance to anticancer drugs. PXR also has been implicated as a regulator of the growth and apoptosis of colon tumors. Here, we have used a xenograft model of colon cancer to define a molecular mechanism that might underlie PXR-driven colon tumor growth and malignancy. Activation of PXR was found to be sufficient to enhance the neoplastic characteristics, including cell growth, invasion, and metastasis, of both human colon tumor cell lines and primary human colon cancer tissue xenografted into immunodeficient mice. Furthermore, we were able to show that this PXR-mediated phenotype required FGF19 signaling. PXR bound to the FGF19 promoter in both human colon tumor cells and "normal" intestinal crypt cells. However, while both cell types proliferated in response to PXR ligands, the FGF19 promoter was activated by PXR only in cancer cells. Taken together, these data indicate that colon cancer growth in the presence of a specific PXR ligand results from tumor-specific induction of FGF19. These observations may lead to improved therapeutic regimens for colon carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.