Diabetes leads to vascular leakage, glial dysfunction, and neuronal apoptosis within the retina. The goal of the studies reported here was to determine the role that retinal microglial cells play in diabetic retinopathy and assess whether minocycline can decrease microglial activation and alleviate retinal complications. Immunohistochemical analyses showed that retinal microglia are activated early in diabetes. Furthermore, mRNAs for interleukin-1 and tumor necrosis factor-␣, proinflammatory mediators known to be released from microglia, are also increased in the retina early in the course of diabetes. Using an in vitro bioassay, we demonstrated that cytokine-activated microglia release cytotoxins that kill retinal neurons. Furthermore, we showed that neuronal apoptosis is increased in the diabetic retina, as measured by caspase-3 activity. Minocycline represses diabetes-induced inflammatory cytokine production, reduces the release of cytotoxins from activated microglia, and significantly reduces measurable caspase-3 activity within the retina. These results indicate that inhibiting microglial activity may be an important strategy in the treatment of diabetic retinopathy and that drugs such as minocycline hold promise in delaying or preventing the loss of vision associated with this disease. Diabetes 54:1559 -1565, 2005
Diabetic retinopathy remains a frightening prospect to patients and frustrates physicians. Destruction of damaged retina by photocoagulation remains the primary treatment nearly 50 years after its introduction. The diabetes pandemic requires new approaches to understand the pathophysiology and improve the detection, prevention, and treatment of retinopathy. This perspective considers how the unique anatomy and physiology of the retina may predispose it to the metabolic stresses of diabetes. The roles of neural retinal alterations and impaired retinal insulin action in the pathogenesis of early retinopathy and the mechanisms of vision loss are emphasized. Potential means to overcome limitations of current animal models and diagnostic testing are also presented with the goal of accelerating therapies to manage retinopathy in the face of ongoing diabetes. Diabetes 55:2401-2411, 2006 D espite years of clinical and laboratory investigation, diabetic retinopathy remains the leading cause of vision impairment and blindness among working-age adults, yet the fundamental cause(s) remains uncertain. Retinal photocoagulation to reduce neovascularization and macular edema was developed in the 1950s and is still the standard of care (1). The number of people worldwide at risk of developing vision loss from diabetes is predicted to double over the next 30 years (2), so it is imperative to develop better means to identify, prevent, and treat retinopathy in its earliest stages rather than wait for the onset of vision-threatening lesions. Progress in these areas requires a new perspective on the problem that includes the roles of the neural retina, impaired insulin action, and inflammation. In this way, established neurobiological principles can inform us how diabetes impairs vision, and knowledge of metabolism, inflammation, and regenerative medicine may lead to new treatments.This perspective will discuss how the unique anatomy and physiology of the retina may render it vulnerable to the metabolic derangements of diabetes and lead to impaired vision. The intent of this unconventional approach is to encourage consideration of new opportunities for investigations that will advance the field. NORMAL RETINAL STRUCTURE AND PHYSIOLOGY Topographic and cellular organization of the retina.It is instructive to consider the functional organization of the retina (literally a network) to better understand the impact of diabetes (http://webvision.med.utah.edu). The retina is a transparent layer of neural tissue between the retinal pigmented epithelium and the vitreous body. Normal vision depends on intact cell-cell communication among the neuronal, glial, microglial, vascular, and pigmented epithelial cells of the retina. The fundamental functions of the retina are to capture photons, convert the photochemical energy into electrical energy, integrate the resulting action potentials, and transmit them to the occipital lobe of the brain, where they are deciphered and interpreted into recognizable images. The retina is partitioned from the syst...
Oxidative stress causes mitochondrial dysfunction and metabolic complications through unknown mechanisms. Cardiolipin (CL) is a key mitochondrial phospholipid required for oxidative phosphorylation. Oxidative damage to CL from pathological remodeling is implicated in the etiology of mitochondrial dysfunction commonly associated with diabetes, obesity, and other metabolic diseases. Here we show that ALCAT1, a lyso-CL acyltransferase up-regulated by oxidative stress and diet-induced obesity (DIO), catalyzes the synthesis of CL species which are highly sensitive to oxidative damage, leading to mitochondrial dysfunction, ROS production, and insulin resistance. These metabolic disorders were reminiscent of those observed in type 2 diabetes, and were reversed by rosiglitazone treatment. Consequently, ALCAT1 deficiency prevented the onset of DIO and significantly improved mitochondrial complex I activity, lipid oxidation, and insulin signaling in ALCAT1−/− mice. Collectively, these findings identify a key role of ALCAT1 in regulating CL remodeling, mitochondrial dysfunction, and susceptibility to DIO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.