Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclearencoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drugbased interventions to inhibit the proaging SASP.
The APC tumour suppressor gene is the most commonly mutated gene in colorectal cancer (CRC). Loss of Apc in intestinal stem cells (ISCs) drives aberrant Wnt signalling and adenoma formation in mice 1 . We previously showed that a reduction in WNT-ligand secretion increases the ability of Apc-mutant ISCs to colonise a crypt (fixation) and accelerate tumourigenesis 2 . Here, we investigate key mechanistic processes whereby Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We find that Apc-mutant cells are enriched for transcripts encoding several secreted Wnt antagonists, with Notum being the most highly expressed. Indeed, conditioned medium from Apc-mutant cells suppresses the growth of wild-type organoids in a Notum-dependent manner. Furthermore, Notum-secreting mutant clones actively inhibit the proliferation of surrounding wild-type crypt cells and drive their differentiation, thereby outcompeting them from the niche. Importantly, genetic or pharmacological inhibition of Notum is sufficient to abrogate the expansion of Apcmutant cells and their ability to form intestinal adenomas. Taken together, we demonstrate Notum as a key mediator during the early stages of mutation fixation, which can be targeted to restore wild-type cell competition and thus, offer novel preventative strategies for high-risk patients. MainThe colonic epithelium displays one of the highest mutation rates of all tissues 3,4 , with lossof-function mutations in the APC tumour suppressor considered a key early event in colorectal cancer (CRC) initiation 5 . For a mutation to be maintained within a crypt, it needs to become "fixed", by mutant cells outcompeting wild-type intestinal stem cells (ISC) from the crypt 6,7 .Previous studies revealed that Apc loss (or Kras activation) confer a clonal advantage to ISCs 7,8, increasing their probability of fixation/winning within the crypt and, in the case of Apc mutation, driving adenoma formation. Even though APC-deficient clones have an increased probability of "winning", they can still be stochastically eliminated from the ISC pool i.e. lose.This suggests uncovering the molecular mechanisms by which APC-deficient cells outcompete wild-type cells could lead to novel chemo-preventative approaches.APC is a negative regulator of Wnt signalling that functions as an integral part of the destruction complex, which directs the phosphorylation and degradation of β-catenin 9 . Since Apc-mutant tumours exhibit constitutive Wnt-pathway activation, we first sought to identify genes differentially upregulated in Apc-mutant cells relative to the normal intestinal epithelium.For this, we performed transcriptomic analysis of tumours that develop in VillinCre ER ;Apc fl/+ (hereafter VilCre ER ;Apc fl/+ ) mice following the sporadic loss of the remaining copy of Apc 10 , akin to human CRC 11 . As expected, Wnt-target genes were highly upregulated in these Apcmutant tumours (Extended Data Fig. 1a). The most highly upregulated gene was Notum (Fig. 1a), which encodes a secreted WNT...
Highlights d Map of PDAC dependencies using RNA-seq, ChIP-seq, and genome-wide CRISPR screening d Expression and direct utilization of cytokine and immune signals in PDAC stem cells d Nuclear hormone receptor RORg regulates mouse and human pancreatic cancer d Pharmacologic blockade of RORg reduces tumor burden and improves survival
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.