We present ∼kiloparsec spatial resolution maps of the CO-to-H 2 conversion factor (α CO ) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α CO and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H i column density to solve for both α CO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, 12 CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H i 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α CO results on the more typically used 12 CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α CO and the DGR. On average, α CO = 3.1 M pc −2 (K km s −1 ) −1 for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α CO as a function of galactocentric radius. However, most galaxies exhibit a lower α CO value in the central kiloparsec-a factor of ∼2 below the galaxy mean, on average. In some cases, the central α CO value can be factors of 5-10 below the standard Milky Way (MW) value of α CO,MW = 4.4 M pc −2 (K km s −1 ) −1 . While for α CO we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α CO for studies of nearby galaxies.
It remains a major challenge to derive a theory of cloud-scale ( 100 pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially-resolved (∼ 100 pc) CO-to-Hα flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10−30 Myr, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities Σ H 2 8 M pc −2 , the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at Σ H 2 8 M pc −2 GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by Hα (75−90 per cent of the cloud lifetime), GMCs disperse within just 1−5 Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4−10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally-dependent, dynamical processes driving rapid evolutionary cycling. GMCs and HII regions are the fundamental units undergoing these lifecycles, with mean separations of 100−300 pc in star-forming discs. Future work should characterise the multi-scale physics and mass flows driving these lifecycles.
SDSS-V will be an all-sky, multi-epoch spectroscopic survey of over six million objects. It is designed to decode the history of the Milky Way Galaxy (MW), trace the emergence of the chemical elements, reveal the inner workings of stars, and investigate the origin of planets. It will also create an integral-field spectroscopic map of the interstellar gas in the Galaxy and the Local Group that is 1,000 times larger than the current state of the art and at high enough spatial resolution to reveal the self-regulation mechanisms of galactic ecosystems. SDSS-V will pioneer systematic, spectroscopic monitoring across the whole sky, revealing changes on timescales from 20 minutes to 20 years. The survey will thus track the flickers, flares, and radical transformations of the most luminous persistent objects in the universe: massive black holes growing at the centers of galaxies.The scope and flexibility of SDSS-V will be unique among both extant and anticipated spectroscopic surveys: it is all-sky, with matched survey infrastructures in both hemispheres; it provides near-infrared and optical multi-object fiber spectroscopy that is rapidly reconfigurable to serve high target densities, targets of opportunity, and time-domain monitoring; and it provides optical, ultrawide-field integral field spectroscopy. SDSS-V, with its programs anticipated to start in 2020, will be perfectly timed to multiply the scientific output from major space missions (e.g., TESS, Gaia, Spektr-RG-eROSITA) and ground-based projects. SDSS-V builds on the 25-year heritage of SDSS's advances in data analysis, collaboration spirit and infrastructure, and product deliverables in astronomy. The project is now refining its science scope, optimizing the survey strategies, and developing new hardware that builds on the SDSS-IV infrastructure. We present here an overview of the current state of these developments. SDSS-V is actively seeking to build its consortium of institutional and individual members for a worldwide, partner-driven collaboration.
We present PHANGS–ALMA, the first survey to map CO J = 2 → 1 line emission at ∼1″ ∼100 pc spatial resolution from a representative sample of 90 nearby (d ≲ 20 Mpc) galaxies that lie on or near the z = 0 “main sequence” of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS–ALMA, each beam reaches the size of a typical individual giant molecular cloud, so that these data can be used to measure the demographics, life cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z = 0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, Atacama Large Millimeter/submillimeter Array (ALMA) observations, and characteristics of the delivered data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with MUSE on the Very Large Telescope, the Hubble Space Telescope, AstroSat, the Very Large Array, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle 5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1″ resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS–ALMA public data release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.