Tropospheric O3 has been decreasing across much of the eastern U.S. but has remained steady or even increased in some western regions. Recent increases in VOC and NOx emissions associated with the production of oil and natural gas (O&NG) may contribute to this trend in some areas. The Northern Front Range of Colorado has regularly exceeded O3 air quality standards during summertime in recent years. This region has VOC emissions from a rapidly developing O&NG basin and low concentrations of biogenic VOC in close proximity to urban‐Denver NOx emissions. Here VOC OH reactivity (OHR), O3 production efficiency (OPE), and an observationally constrained box model are used to quantify the influence of O&NG emissions on regional summertime O3 production. Analyses are based on measurements acquired over two summers at a central location within the Northern Front Range that lies between major regional O&NG and urban emission sectors. Observational analyses suggest that mixing obscures any OPE differences in air primarily influenced by O&NG or urban emission sector. The box model confirms relatively modest OPE differences that are within the uncertainties of the field observations. Box model results also indicate that maximum O3 at the measurement location is sensitive to changes in NOx mixing ratio but also responsive to O&NG VOC reductions. Combined, these analyses show that O&NG alkanes contribute over 80% to the observed carbon mixing ratio, roughly 50% to the regional VOC OHR, and approximately 20% to regional photochemical O3 production.
The primary goal of the Second Wind Forecast Improvement Project (WFIP2) is to advance the state-of-the-art of wind energy forecasting in complex terrain. To achieve this goal, a comprehensive 18-month field measurement campaign was conducted in the region of the Columbia River basin. The observations were used to diagnose and quantify systematic forecast errors in the operational High-Resolution Rapid Refresh (HRRR) model during weather events of particular concern to wind energy forecasting. Examples of such events are cold pools, gap flows, thermal troughs/marine pushes, mountain waves, and topographic wakes. WFIP2 model development has focused on the boundary layer and surface-layer schemes, cloud–radiation interaction, the representation of drag associated with subgrid-scale topography, and the representation of wind farms in the HRRR. Additionally, refinements to numerical methods have helped to improve some of the common forecast error modes, especially the high wind speed biases associated with early erosion of mountain–valley cold pools. This study describes the model development and testing undertaken during WFIP2 and demonstrates forecast improvements. Specifically, WFIP2 found that mean absolute errors in rotor-layer wind speed forecasts could be reduced by 5%–20% in winter by improving the turbulent mixing lengths, horizontal diffusion, and gravity wave drag. The model improvements made in WFIP2 are also shown to be applicable to regions outside of complex terrain. Ongoing and future challenges in model development will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.