Improved approaches for the detection of common epithelial malignancies are urgently needed to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are small (Ϸ22 nt) regulatory RNAs that are frequently dysregulated in cancer and have shown promise as tissue-based markers for cancer classification and prognostication. We show here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. miRNAs originating from human prostate cancer xenografts enter the circulation, are readily measured in plasma, and can robustly distinguish xenografted mice from controls. This concept extends to cancer in humans, where serum levels of miR-141 (a miRNA expressed in prostate cancer) can distinguish patients with prostate cancer from healthy controls. Our results establish the measurement of tumorderived miRNAs in serum or plasma as an important approach for the blood-based detection of human cancer.biomarker ͉ miR-141 ͉ plasma ͉ serum ͉ prostate cancer T he development of minimally invasive tests for the detection and monitoring of common epithelial malignancies could greatly reduce the worldwide health burden of cancer (1). Although conventional strategies for blood-based biomarker discovery (e.g., using proteomic technologies) have shown promise, the development of clinically validated cancer detection markers remains an unmet challenge for many common human cancers (2). New approaches that can complement and improve on current strategies for cancer detection are urgently needed.MicroRNAs (miRNAs) are small (typically Ϸ22 nt in size) regulatory RNA molecules that function to modulate the activity of specific mRNA targets and play important roles in a wide range of physiologic and pathologic processes (3, 4). We hypothesized that miRNAs could be an ideal class of blood-based biomarkers for cancer detection because: (i) miRNA expression is frequently dysregulated in cancer (5, 6), (ii) expression patterns of miRNAs in human cancer appear to be tissue-specific (7), and (iii) miRNAs have unusually high stability in formalin-fixed tissues (8-10). This third point led us to speculate that miRNAs may have exceptional stability in plasma and serum as well. We show here that miRNAs are in fact present in clinical samples of plasma and serum in a remarkably stable form. Furthermore, we establish proof-ofprinciple for blood-based miRNA cancer detection by using both a xenograft model system and clinical serum specimens from patients with prostate cancer. Our results lay the foundation for the development of miRNAs as a novel class of blood-based cancer biomarkers and raise provocative questions regarding the mechanism of stability and potential biological function of circulating miRNAs. Results Identification and Molecular Cloning of Endogenous miRNAs fromHuman Plasma. Prior reports have suggested that RNA from human plasma (the noncellular component of blood remaining after removing cells by centrifugation) is largely of low molecular weight (11). W...
BackgroundMicroRNAs (miRNAs) are small regulatory RNAs that are implicated in cancer pathogenesis and have recently shown promise as blood-based biomarkers for cancer detection. Epithelial ovarian cancer is a deadly disease for which improved outcomes could be achieved by successful early detection and enhanced understanding of molecular pathogenesis that leads to improved therapies. A critical step toward these goals is to establish a comprehensive view of miRNAs expressed in epithelial ovarian cancer tissues as well as in normal ovarian surface epithelial cells.MethodologyWe used massively parallel pyrosequencing (i.e., “454 sequencing”) to discover and characterize novel and known miRNAs expressed in primary cultures of normal human ovarian surface epithelium (HOSE) and in tissue from three of the most common histotypes of ovarian cancer. Deep sequencing of small RNA cDNA libraries derived from normal HOSE and ovarian cancer samples yielded a total of 738,710 high-quality sequence reads, generating comprehensive digital profiles of miRNA expression. Expression profiles for 498 previously annotated miRNAs were delineated and we discovered six novel miRNAs and 39 candidate miRNAs. A set of 124 miRNAs was differentially expressed in normal versus cancer samples and 38 miRNAs were differentially expressed across histologic subtypes of ovarian cancer. Taqman qRT-PCR performed on a subset of miRNAs confirmed results of the sequencing-based study.ConclusionsThis report expands the body of miRNAs known to be expressed in epithelial ovarian cancer and provides a useful resource for future studies of the role of miRNAs in the pathogenesis and early detection of ovarian cancer.
BackgroundCA125, human epididymis protein 4 (HE4), mesothelin, B7-H4, decoy receptor 3 (DcR3), and spondin-2 have been identified as potential ovarian cancer biomarkers. Except for CA125, their behavior in the prediagnostic period has not been evaluated.MethodsImmunoassays were used to determine concentrations of CA125, HE4, mesothelin, B7-H4, DcR3, and spondin-2 proteins in prediagnostic serum specimens (1–11 samples per participant) that were contributed 0–18 years before ovarian cancer diagnosis from 34 patients with ovarian cancer (15 with advanced-stage serous carcinoma) and during a comparable time interval before the reference date from 70 matched control subjects who were participating in the Carotene and Retinol Efficacy Trial. Lowess curves were fit to biomarker levels in cancer patients and control subjects separately to summarize mean levels over time. Receiver operating characteristic curves were plotted, and area-under-the curve (AUC) statistics were computed to summarize the discrimination ability of these biomarkers by time before diagnosis.ResultsSmoothed mean concentrations of CA125, HE4, and mesothelin (but not of B7-H4, DcR3, and spondin-2) began to increase (visually) in cancer patients relative to control subjects approximately 3 years before diagnosis but reached detectable elevations only within the final year before diagnosis. In descriptive receiver operating characteristic analyses, the discriminatory power of these biomarkers was limited (AUC statistics range = 0.56–0.75) but showed increasing accuracy with time approaching diagnosis (eg, AUC statistics for CA125 were 0.57, 0.68, and 0.74 for ≥4, 2–4, and <2 years before diagnosis, respectively).ConclusionSerum concentrations of CA125, HE4, and mesothelin may provide evidence of ovarian cancer 3 years before clinical diagnosis, but the likely lead time associated with these markers appears to be less than 1 year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.