USP7/HAUSP is a key regulator of p53 and Mdm2 and is targeted by the Epstein-Barr nuclear antigen 1 (EBNA1) protein of Epstein-Barr virus (EBV). We have determined the crystal structure of the p53 binding domain of USP7 alone and bound to an EBNA1 peptide. This domain is an eight-stranded beta sandwich similar to the TRAF-C domains of TNF-receptor associated factors, although the mode of peptide binding differs significantly from previously observed TRAF-peptide interactions in the sequence (DPGEGPS) and the conformation of the bound peptide. NMR chemical shift analyses of USP7 bound by EBNA1 and p53 indicated that p53 binds the same pocket as EBNA1 but makes less extensive contacts with USP7. Functional studies indicated that EBNA1 binding to USP7 can protect cells from apoptotic challenge by lowering p53 levels. The data provide a structural and conceptual framework for understanding how EBNA1 might contribute to the survival of Epstein-Barr virus-infected cells.
Minichromosome maintenance (MCM) complex replicative helicase complexes play essential roles in DNA replication in all eukaryotes. Using a tandem affinity purification-tagging approach in human cells, we discovered a form of the MCM complex that contains a previously unstudied protein, MCM binding protein (MCM-BP). MCM-BP is conserved in multicellular eukaryotes and shares limited homology with MCM proteins. MCM-BP formed a complex with MCM3 to MCM7, which excluded MCM2; and, conversely, hexameric complexes of MCM2 to MCM7 lacked MCM-BP, indicating that MCM-BP can replace MCM2 in the MCM complex. MCM-BP-containing complexes exhibited increased stability under experimental conditions relative to those containing MCM2. MCM-BP also formed a complex with the MCM4/6/7 core helicase in vitro, but, unlike MCM2, did not inhibit this helicase activity. A proportion of MCM-BP bound to cellular chromatin in a cell cycle-dependent manner typical of MCM proteins, and, like other MCM subunits, preferentially associated with a cellular origin in G 1 but not in S phase. In addition, down-regulation of MCM-BP decreased the association of MCM4 with chromatin, and the chromatin association of MCM-BP was at least partially dependent on MCM4 and cdc6. The results indicate that multicellular eukaryotes contain two types of hexameric MCM complexes with unique properties and functions.The initiation of DNA replication in eukaryotic cells is a carefully regulated process requiring the orchestrated assembly of many proteins at origin sites, including the origin recognition complex and minichromosome maintenance (MCM) complex. The MCM complex consists of six subunits, MCM2 through MCM7 (MCM2-7), which form a hexamer. Studies in Saccharomyces cerevisiae, where MCM proteins were first identified (25), showed that each of the MCM subunits performs an essential function in the initiation and elongation of DNA replication (20,21). Genetic and biochemical studies conducted in yeast, Xenopus, Drosophila, and mammals point to probable roles of the MCM proteins in melting origin DNA and in functioning as the replicative helicase at replication forks (8,27).Biochemical analyses of the MCM complex have shown that MCM4, -6, and -7 are the most stably associated subunits, referred to as the helicase core (MCM4/6/7), with MCM2 and a dimer of MCM3 and MCM5 being more loosely associated with the core (13,23,30,36). MCM4, MCM6, and MCM7 on their own can form hexamers with weak but measurable DNA helicase activity. The addition of MCM2 to the MCM4/6/7 core complex disrupts the hexamer and inhibits DNA helicase activity (12, 23). The complete MCM2-7 complex has no detectable helicase activity in vitro (12, 23), but helicase activity has been reported for a larger complex containing MCM2-7, cdc45, and GINS (29). As expected, MCM complexes exhibit ATPase activity (6,23,35). ATPase activity has not been observed in individual MCM subunits but occurs when certain pairs of MCM proteins interact (6).Each of the six MCM subunits shares a region of homology referre...
The EBNA1 protein of Epstein-Barr virus (EBV) is essential for EBV latent infection in ensuring the replication and stable segregation of the EBV genomes and in activating the transcription of other EBV latency genes. We have tested the ability of four host proteins (Brd2, Brd4, DEK, and MeCP2) implicated in the segregation of papillomavirus and Kaposi's sarcoma-associated herpesvirus to support EBNA1-mediated segregation of EBV-based plasmids in Saccharomyces cerevisiae. We found that Brd4 enabled EBNA1-mediated segregation while Brd2 and MeCP2 had a general stimulatory effect on plasmid maintenance. EBNA1 interacted with Brd4 in both yeast and human cells through N-terminal sequences previously shown to mediate transcriptional activation but not segregation. In keeping with this interaction site, silencing of Brd4 in human cells decreased transcriptional activation by EBNA1 but not the mitotic chromosome attachment of EBNA1 that is required for segregation. In addition, Brd4 was found to be preferentially localized to the FR enhancer element regulated by EBNA1, over other EBV sequences, in latently EBV-infected cells. The results indicate that EBNA1 can functionally interact with Brd4 in native and heterologous systems and that this interaction facilitates transcriptional activation by EBNA1 from the FR element.As part of their life cycle, gammaherpesviruses and papillomaviruses establish persistent infections in proliferating cells in which their double-stranded circular DNA genomes are maintained at a constant copy number. Maintenance of copy number involves the doubling of the population of viral genomes each cell cycle and a segregation mechanism to ensure equal delivery of the genomes to the daughter cells during cell division. The mechanism of mitotic segregation is conserved in the gammaherpesviruses and papillomaviruses in that, in all cases, the viral genomes are tethered to the host mitotic chromosomes through the viral origin DNA binding protein, which binds directly to the viral segregation element and interacts with one or more host chromosomal proteins.The mechanism of papillomavirus genome segregation has been studied most extensively using the bovine papillomavirus (BPV). The BPV E2 protein tethers the viral genomes to host chromosomes through interactions with multiple E2 recognition sites in the minichromosome maintenance element (MME) (22,30,38,47). E2 binds the MME through its DNA binding and dimerization domain and interacts with mitotic chromosomes through the domain responsible for transcriptional activation (6, 47). The mechanism by which the E2 transactivation domain contacts mitotic chromosomes to mediate segregation has been the subject of several studies, and considerable evidence has implicated an interaction with the bromodomain protein Brd4 in this process. Brd4 was identified as a binding partner of E2 that colocalized with E2 on host mitotic chromosomes and was shown to enable E2 to maintain plasmids containing the MME in budding yeast (Saccharomyces cerevisiae) (9,34,62). Inte...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.