ABSTRACT:The Lemaitre damage model is now widely used to deal with coupled damage analyses for various mechanical applications. In this article, different extensions of the model are presented and discussed to deal with complex multiaxial configurations -such as multi-stages bulk forming processes. A specific treatment is done to account for compressive damage growth, and a stress triaxiality cut-off value is considered to avoid any damage evolution below a critical negative triaxiality. The damage potential is also modified to deal with highly ductile materials, and the plastic strain is split into a negative part and a positive part to differentiate damage growth for compressive states of stress and for tensile states of stress. Finally, an anisotropic damage approach based on the comparison between grain flow orientation and principal loading directions is defined. A combination of these extensions is achieved within a single Lemaitre formulation. Application on different examples show the robustness and accuracy of the model defined in this paper.
International audienceSpark Plasma Sintering (SPS) is a process which allows powder densification, applying simultaneously a uniaxial external load and pulsed direct current of very high intensity through tools. This process is attracting significant attention, with a tremendous increase of studies in the metal powder densification field. Its growing popularity lies in the very fast heating rate and short cycle time driven by the Joule effect, which limits grain growth. However, this process implements different coupled electrical, thermal and mechanical phenomena. All this makes the process difficult to develop and to apply for routine industrial production, which has motivated the development of numerical simulation tools in order to understand and optimize the process. Up to now, very few models integrating the coupling between heat generation, electric transfer and mechanics have been proposed. In particular, a numerical predictive model for powder densification requires a good understanding of the mechanical behavior, in our case a viscoplastic compressive law (Abouaf mechanical model). In this article, we will discuss the characterization of the material during densification, focusing on the creep behaviors of dense and porous state materials used to simulate sintering in the Abouaf framework. Validations of the creep law parameters and also of the densification parameters will be presented and subsequently discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.