Parkinson’s disease (PD) is a neurodegenerative condition featured by motor dysfunction, death of midbrain dopaminergic neurons and accumulation of α-synuclein (αSyn) aggregates. Growing evidence suggests that PD diagnosis happens late in the disease progression and that the pathology may originate much earlier in the enteric nervous system (ENS) before advancing to the brain, via autonomic fibers. It was recently described that a specific cell type from the gut epithelium named enteroendocrine cells (EECs) possess many neuron-like properties including αSyn expression. By facing the gut lumen and being directly connected with αSyn-containing enteric neurons in a synaptic manner, EECs form a neural circuit between the gastrointestinal tract and the ENS, thereby being a possible key player in the outcome of PD in the gut. We have characterized the progression and the cellular mechanisms involved in αSyn pre-formed fibrils (PFFs) transfer from EECs to neuronal cells. We show that brain organoids efficiently internalize αSyn PFF seeds which triggers the formation of larger intracellular inclusions. In addition, in the enteroendocrine cell line STC-1 and in the neuronal cell line SH-SY5Y, αSyn PFFs induced intracellular calcium (Ca2+) oscillations on an extracellular Ca2+ source-dependent manner and triggered αSyn fibrils internalization by endocytosis. We characterized the spread of αSyn PFFs from enteroendocrine to neuronal cells and showed that this process is dependent on physical cell-to-cell contact and on Rab35 GTPase. Lastly, inhibition of Rab35 increases the clearance of αSyn fibrils by redirecting them to the lysosomal compartment. Therefore, our results reveal mechanisms that contribute to the understanding of how seeded αSyn fibrils promote the progression of αSyn pathology from EECs to neuronal cells shifting the focus of PD etiology to the ENS.
Mitochondrial function, largely regulated by the dynamics of this organelle, is inextricably linked to the oocyte health. In comparison with most somatic cells, mitochondria in oocytes are smaller and rounder in appearance, suggesting limited fusion. The functional implications of this distinct morphology, and how changes in the mitochondrial shape translate to mitochondrial function in oogenesis is little understood. We, therefore, asked whether the pro‐fusion proteins mitofusins 1 (MFN1) and 2 (MFN2) are required for the oocyte development. Here we show that oocyte‐specific deletion of Mfn1, but not Mfn2, prevents the oocyte growth and ovulation due to a block in folliculogenesis. We pinpoint the loss of oocyte growth and ovulation to impaired PI3K‐Akt signaling and disrupted oocyte‐somatic cell communication. In support, the double loss of Mfn1 and Mfn2 partially rescues the impaired PI3K‐Akt signaling and defects in oocyte development secondary to the single loss of Mfn1. Together, this work demonstrates that the mitochondrial function influences the cellular signaling during the oocyte development, and highlights the importance of distinct, nonredundant roles of MFN1 and MFN2 in oogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.