For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae , that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type–related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.
Congenital heart diseases (CHDs), including hypoplastic left heart syndrome (HLHS), are genetically complex and poorly understood. Here, a multi-disciplinary platform was established to functionally evaluate novel CHD gene candidates, based on whole genome and iPSC RNA sequencing of a HLHS family-trio. Filtering for rare variants and altered expression in proband iPSCs prioritized 10 candidates. siRNA/RNAi-mediated knockdown in generic human iPSC-derived cardiomyocytes (hiPSC-CM) and in developing Drosophila and zebrafish hearts revealed that LDL receptor-related protein LRP2 is required for cardiomyocyte proliferation and differentiation. Consistent with hypoplastic heart defects, compared to patents the proband's iPSC-CMs exhibited reduced proliferation. Interestingly, rare, predicted-damaging LRP2 variants were enriched in a HLHS cohort; however, understanding their contribution to HLHS requires further investigation. Collectively, we have established a multi-species high-throughput platform to rapidly evaluate candidate genes and their interactions during heart development, which are crucial first steps towards deciphering oligogenic underpinnings of CHDs, including maladaptive left hearts.
Background - KCNMA1 encodes the α-subunit of the large-conductance Ca 2+ -activated K + channel, K Ca 1.1, and lies within a linkage interval for atrial fibrillation (AF). Insights into the cardiac functions of K Ca 1.1 are limited and KCNMA1 has not been investigated as an AF candidate gene. Methods - The KCNMA1 gene was sequenced in 118 patients with familial AF. The role of K Ca 1.1 in normal cardiac structure and function was evaluated in humans, mice, zebrafish, and fly. A novel KCNMA1 variant was functionally characterized. Results - A complex KCNMA1 variant was identified in one kindred with AF. To evaluate potential disease mechanisms, we first evaluated the distribution of K Ca 1.1 in normal hearts using immunostaining and immunogold electron microscopy. K Ca 1.1 was seen throughout the atria and ventricles in humans and mice, with strong expression in the sinus node. In an ex vivo murine sinoatrial node preparation, addition of the K Ca 1.1 antagonist, paxilline, blunted the increase in beating rate induced by adrenergic receptor stimulation. Knockdown of the K Ca 1.1 ortholog, kcnma1b , in zebrafish embryos resulted in sinus bradycardia with dilatation and reduced contraction of the atrium and ventricle. Genetic inactivation of the Drosophila K Ca 1.1 ortholog, slo , systemically or in adult stages, also slowed the heartbeat and produced fibrillatory cardiac contractions. Electrophysiological characterization of slo -deficient flies revealed bursts of action potentials, reflecting increased events of fibrillatory arrhythmias. Flies with cardiac-specific overexpression of the human KCNMA1 mutant also showed increased heart period and bursts of action potentials, similar to the K Ca 1.1 loss-of-function models. Conclusions - Our data point to a highly conserved role of K Ca 1.1 in sinus node function in humans, mice, zebrafish and fly and suggest that K Ca 1.1 loss of function may predispose to AF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.