Iron supplementation in ESRD patients down-regulates proinflammatory immune effector pathways and stimulates the expression of the anti-inflammatory cytokine IL-4. Such a condition is detrimental for host response toward invading pathogens. However, tissue damage by radicals such as endogenous peroxides may be reduced in this condition due to impaired TNF-alpha formation.
Natural-resistance associated macrophage protein 1 (Nramp1) encodes a transmembrane phagolysosomal protein exerting resistance toward infections with intracellular pathogens by a mechanism not fully elucidated so far. We used the murine macrophage cell line RAW264.7, stably transfected with functional (RAW-37) or nonfunctional (RAW-21) Nramp1, to study for differences in the expression of NO, a central antimicrobial effector molecule of macrophages. Following stimulation with IFN-γ and LPS, Nramp1-expressing cells exhibit higher enzymatic activity of inducible NO synthase (iNOS) and increased cytoplasmic iNOS mRNA levels than RAW-21 cells. Time-course experiments showed that iNOS-mRNA levels remain increased in RAW-37 cells after prolonged cytokine stimulation while they decrease in RAW-21 cells. Reporter gene assays with iNOS-promoter luciferase constructs demonstrated an increased and prolonged promoter activity in Nramp1-resistant vs susceptible cells. This was paralleled by increased IFN regulatory factor 1 (IRF-1) expression and binding affinity to the iNOS promoter in RAW-37 cells, which may be related to enhanced STAT-1 binding affinity in these cells. A point mutation within the IRF-1 binding site of the iNOS promoter abolished the differences in iNOS transcription between RAW-21 and RAW-37 cells. Cells carrying functional Nramp1 express increased amounts of NO, which may be related to STAT-1-mediated stimulation of IRF-1 expression with subsequent prolonged activation of iNOS transcription. Enhanced NO expression may partly underlie the protection against infection with intracellular pathogens by Nramp1 functionality.
Human immunodeficiency virus type 1 (HIV) infection is characterized by progressive immunodeficiency despite of an overwhelming cellular immune activation. Patients show highly elevated serum/plasma concentrations of the proinflammatory cytokine interferon-(IFN-), which induces human monocytes to form neopterin, to produce reactive oxygen species (ROS) and in parallel, to degrade tryptophan. Enhanced tryptophan degradation by the enzyme indoleamine-2, 3-dioxygenase (IDO) contributes importantly to disease progression and "complications" of HIV infection: By a subsequent impairment of protein metabolism and serotonin formation, the development of neuropsychiatric disorders and weight loss in HIV infected patients can be enforced. Furthermore, increased IDO-activation efficiently suppresses the growth and proliferation of pathogens as well as host T-cells. IDO and other IFN--mediated pathways are strongly induced in patients with HIV infection and are also linked with disease progression: Neopterin formation by GTPcyclohydrolase I sensitively reflects the stage of the disease, and determination of the pteridine in body fluids is useful to monitor the efficacy of antiretroviral therapy. Neopterin is an independent prognostic factor for the outcome of disease, and well suited to estimate the degree of immune activation in vivo and the responsiveness of immunocompetent cells to stimulation in vitro. ROS formation may contribute to the development of oxidative stress in HIV infection, resulting in depletion of antioxidants. The cause-effective role of an overwhelming Th1-type immune response together with the activation of IDO and other IFN--mediated biochemical pathways for the course of HIV infection, the development of immunodeficiency, anemia and weight loss in HIV patients is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.