Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
Excessive daytime sleepiness (EDS) affects 10–20% of the population and is associated with substantial functional deficits. Here, we identify 42 loci for self-reported daytime sleepiness in GWAS of 452,071 individuals from the UK Biobank, with enrichment for genes expressed in brain tissues and in neuronal transmission pathways. We confirm the aggregate effect of a genetic risk score of 42 SNPs on daytime sleepiness in independent Scandinavian cohorts and on other sleep disorders (restless legs syndrome, insomnia) and sleep traits (duration, chronotype, accelerometer-derived sleep efficiency and daytime naps or inactivity). However, individual daytime sleepiness signals vary in their associations with objective short vs long sleep, and with markers of sleep continuity. The 42 sleepiness variants primarily cluster into two predominant composite biological subtypes - sleep propensity and sleep fragmentation. Shared genetic links are also seen with obesity, coronary heart disease, psychiatric diseases, cognitive traits and reproductive ageing.
the EU Autism MOLGEN Consortium 8Over the past decade, research on the genetic variants underlying susceptibility to autism and autism spectrum disorders (ASDs) has focused on linkage and candidate gene studies. This research has implicated various chromosomal loci and genes. Candidate gene studies have proven to be particularly intractable, with many studies failing to replicate previously reported associations. In this paper, we investigate previously implicated genomic regions for a role in ASD susceptibility, using four cohorts of European ancestry. Initially, a 384 SNP Illumina GoldenGate array was used to examine linkage at six previously implicated loci. We identify linkage approaching genome-wide suggestive levels on chromosome 2 (rs2885116, MLOD¼1.89). Association analysis showed significant associations in MKL2 with ASD (rs756472, P¼4.31Â10 À5 ) and between SND1 and strict autism (rs1881084, P¼7.76Â10 À5 ) in the Finnish and Northern Dutch populations, respectively. Subsequently, we used a second 384 SNP Illumina GoldenGate array to examine the association in seven candidate genes, and evidence for association was found in RELN (rs362780, P¼0.00165). Further increasing the sample size strengthened the association with RELN (rs362780, P¼0.001) and produced a second significant result in GRIK2 (rs2518261, P¼0.008). Our results strengthen the case for a more detailed study of the role of RELN and GRIK2 in autism susceptibility, as well as identifying two new potential candidate genes, MKL2 and SND1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.