AimsEmpagliflozin, a clinically used oral antidiabetic drug that inhibits the sodium‐dependent glucose co‐transporter 2, has recently been evaluated for its cardiovascular safety. Surprisingly, empagliflozin reduced mortality and hospitalization for heart failure (HF) compared to placebo. However, the underlying mechanisms remain unclear. Therefore, our study aims to investigate whether empagliflozin may cause direct pleiotropic effects on the myocardium.Methods and resultsIn order to assess possible direct myocardial effects of empagliflozin, we performed contractility experiments with in toto‐isolated human systolic end‐stage HF ventricular trabeculae. Empagliflozin significantly reduced diastolic tension, whereas systolic force was not changed. These results were confirmed in murine myocardium from diabetic and non‐diabetic mice, suggesting independent effects from diabetic conditions. In human HF cardiomyocytes, empagliflozin did not influence calcium transient amplitude or diastolic calcium level. The mechanisms underlying the improved diastolic function were further elucidated by studying myocardial fibres from patients and rats with diastolic HF (HF with preserved ejection fraction, HFpEF). Empagliflozin beneficially reduced myofilament passive stiffness by enhancing phosphorylation levels of myofilament regulatory proteins. Intravenous injection of empagliflozin in anaesthetized HFpEF rats significantly improved diastolic function measured by echocardiography, while systolic contractility was unaffected.ConclusionEmpagliflozin causes direct pleiotropic effects on the myocardium by improving diastolic stiffness and hence diastolic function. These effects were independent of diabetic conditions. Since pharmacological therapy of diastolic dysfunction and HF is an unmet need, our results provide a rationale for new translational studies and might also contribute to the understanding of the EMPA‐REG OUTCOME trial.
Our data demonstrate that the clinical course of symptomatic LVNC can be severe. The identified pathogenic variants and distribution of disease genes-a titin-related pathomechanism is found in every fourth patient-should be considered in genetic counselling of patients. Pathogenic variants in the nuclear proteins Lamin A/C and RBM20 were associated with worse outcome.
Barth syndrome (BTHS) patients carrying mutations in tafazzin (TAZ1), which is involved in the final maturation of cardiolipin, present with dilated cardiomyopathy, skeletal myopathy, growth retardation and neutropenia. To study how mitochondrial function is impaired in BTHS patients, we generated induced pluripotent stem cells (iPSCs) to develop a novel and relevant human model system for BTHS. BTHS-iPSCs generated from dermal fibroblasts of three patients with different mutations in TAZ1 expressed pluripotency markers, and were able to differentiate into cells derived from all three germ layers both in vitro and in vivo. We used these cells to study the impact of tafazzin deficiency on mitochondrial oxidative phosphorylation. We found an impaired remodeling of cardiolipin, a dramatic decrease in basal oxygen consumption rate and in the maximal respiratory capacity in BTHS-iPSCs. Simultaneous measurement of extra-cellular acidification rate allowed us a thorough assessment of the metabolic deficiency in BTHS patients. Blue native gel analyses revealed that decreased respiration coincided with dramatic structural changes in respiratory chain supercomplexes leading to a massive increase in generation of reactive oxygen species. Our data demonstrate that BTHS-iPSCs are capable of modeling BTHS by recapitulating the disease phenotype and thus are important tools for studying the disease mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.