PTEN is a tumor suppressor gene mutated in many human cancers, and its expression is reduced or absent in almost half of hepatoma patients. We used the Cre-loxP system to generate a hepatocyte-specific null mutation
The t(8;21) translocation is one of the most frequent chromosome abnormalities in acute myeloid leukemia. It has been shown that the t(8;21) breakpoints on chromosome 21 cluster within a single specific intron of the AML1 gene, which is highly homologous to the Drosophila segmentation gene runt. Here we report that this translocation juxtaposes the AML1 gene with a novel gene, named MTG8, on chromosome 8, resulting in the synthesis of an AML1‐MTG8 fusion transcript. The fusion protein predicted by the AML1‐MTG8 transcript consists of the runt homology region of AML1 and the most part of MTG8, which contains putative zinc finger DNA binding motifs and proline‐rich regions constituting a characteristic feature of transcription factors. The MTG8 gene is not expressed in normal hematopoietic cells, whereas AML1 is expressed at high levels. Our results indicate that the production of chimeric AML1‐MTG8 protein, probably a chimeric transcription factor, may contribute to myeloid leukemogenesis.
PTEN is a tumor suppressor gene mutated in many human cancers, and its expression is reduced or absent in almost half of hepatoma patients. We used the Cre-loxP system to generate a hepatocyte-specific null mutation
Abstract. The tight junction is an essential element of the intercellular junctional complex; yet its protein composition is not fully understood. At present, only three proteins, ZO-1 (Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. 1986. J. Cell Biol. 103:755-766), cingulin (Citi, S., H. Sabanay, R. Jakes, B. Geiger, and J. Kendrick-Jones. 1988. Nature (Lond.). 333:272-275) and ZO-2 (Gumbiner, B., T. Lowenkopf, and D. Apatira. 1991. Proc. Natl. Acad. Sci. USA. 88:3460-3464) are known to be associated with the tight junction. We have generated a monoclonal antibody (7H6) against a bile canaliculusrich membrane fraction prepared from rat liver. This 7H6 antigen was preferentially localized by immunofluorescence at the junctional complex regions of hepatocytes and other epithelia, and 7H6-aftiliated gold particles were shown electron microscopically to localize at the periphery of tight junctions. Immunoblot analysis of a bile canaliculus-rich fraction of rat liver using 7H6, anti-ZO-1 antibody (R26.4C), and anticingulin antibody revealed that 7H6 reacted selectively with a 155-kD protein, whereas R26.4C reacted only with a 225-kD protein. Anti-cingulin antibody reacted solely with 140 and 108-kD proteins, indicating that the protein recognized by 7H6 is immunologically different from ZO-1 and cingulin. Immunoprecipitation of detergent extracts obtained from metabolically labeled MDCK cells with R26.4C coprecipitated a 160-kD protein, which corresponds to ZO-2, with ZO-1. However, 7H6 did not react with the 160-kD protein.These results strongly suggest that the 7H6 antibody recognizes a novel tight junction-associated protein different from ZO-1, cingulin and ZO-2.
We investigated the mechanism of phenotypic plasticity of hepatocytes in a three-dimensional organoid culture system, in which hepatocytic spheroids were embedded within a collagen gel matrix. Hepatocytes expressed several bile duct markers including cytokeratin (CK) 19 soon after culture and underwent branching morphogenesis within the matrix in the presence of insulin and epidermal growth factor. Cultured hepatocytes did not express Delta-like, a specific marker for oval cells and hepatoblasts. Furthermore, hepatocytes isolated from c-kit mutant rats (Ws/Ws), which are defective in proliferation of oval cells, showed essentially the same phenotypic changes as those isolated from control rats. The bile duct-like differentiation of hepatocytes was associated with increased expression of Jagged1, Jagged2, Notch1, and several Notch target genes. CK19 expression and branching morphogenesis were inhibited by dexamethasone, a mitogen-activated protein kinase kinase 1 (MEK1) inhibitor (PD98059), and a phosphatidyl inositol 3-kinase inhibitor (LY294002). After being cultured for more than 3 weeks within the gels, hepatocytes transformed into ductular structures surrounded by basement membranes. Our results suggest that hepatocytes might have the potential to transdifferentiate into bile duct-like cells without acquiring a stem-like phenotype and that this is mediated through specific protein tyrosine phosphorylation pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.