BackgroundExercise intolerance is a common clinical feature and is linked to poor prognosis in patients with heart failure (HF). Skeletal muscle dysfunction, including impaired energy metabolism in the skeletal muscle, is suspected to play a central role in this intolerance, but the underlying mechanisms remain elusive. Lysine acetylation, a recently identified post‐translational modification, has emerged as a major contributor to the derangement of mitochondrial metabolism. We thus investigated whether mitochondrial protein acetylation is associated with impaired skeletal muscle metabolism and lowered exercise capacity in both basic and clinical settings of HF.MethodsWe first conducted a global metabolomic analysis to determine whether plasma acetyl‐lysine is a determinant factor for peak oxygen uptake (peak VO2) in HF patients. We then created a murine model of HF (n = 11) or sham‐operated (n = 11) mice with or without limited exercise capacity by ligating a coronary artery, and we tested the gastrocnemius tissues by using mass spectrometry‐based acetylomics. A causative relationship between acetylation and the activity of a metabolic enzyme was confirmed in in vitro studies.ResultsThe metabolomic analysis verified that acetyl‐lysine was the most relevant metabolite that was negatively correlated with peak VO2 (r = −0.81, P < 0.01). At 4 weeks post‐myocardial infarction HF, a treadmill test showed lowered work (distance × body weight) and peak VO2 in the HF mice compared with the sham‐operated mice (11 ± 1 vs. 23 ± 1 J, P < 0.01; 143 ± 5 vs. 159 ± 3 mL/kg/min, P = 0.01; respectively). As noted, the protein acetylation of gastrocnemius mitochondria was 48% greater in the HF mice than the sham‐operated mice (P = 0.047). Acetylproteomics identified the mitochondrial enzymes involved in fatty acid β‐oxidation (FAO), the tricarboxylic acid cycle, and the electron transport chain as targets of acetylation. In parallel, the FAO enzyme (β‐hydroxyacyl CoA dehydrogenase) activity and fatty acid‐driven mitochondrial respiration were reduced in the HF mice. This alteration was associated with a decreased expression of mitochondrial deacetylase, Sirtuin 3, because silencing of Sirtuin 3 in cultured skeletal muscle cells resulted in increased mitochondrial acetylation and reduced β‐hydroxyacyl CoA dehydrogenase activity.ConclusionsEnhanced mitochondrial protein acetylation is associated with impaired FAO in skeletal muscle and reduced exercise capacity in HF. Our results indicate that lysine acetylation is a crucial mechanism underlying deranged skeletal muscle metabolism, suggesting that its modulation is a potential approach for exercise intolerance in HF.
Heart failure (HF) is associated with aberrant skeletal muscle impairments, which are closely linked to the severity of HF. A low level of brain-derived neurotrophic factor (BDNF), a myokine produced in the skeletal muscle, is known to be involved in reduced exercise capacity and poor prognosis in HF. However, little is known about the factors or conditions of skeletal muscle associated with BDNF levels. We investigated the association between serum BDNF levels and the skeletal muscle mass and function in HF patients (n = 60, 63 ± 13 years) and age-matched controls (n = 29, 61 ± 16 years). The serum BDNF level was significantly lower in the HF patients compared to the controls (24.9 ± 0.9 versus 28.6 ± 1.3, P = 0.021). In a univariate analysis, BDNF was significantly correlated with the peak oxygen uptake, estimated glomerular filtration rate, 10-m gait speed, and muscle strength, but not with the body mass index or lean mass in the HF group. A multiple linear regression analysis revealed that BDNF was independently associated with muscle strength (β-coefficient = 2.80, 95%CI: 1.89-11.8, P = 0.008). Serum BDNF levels were associated with exercise capacity and skeletal muscle function, but not with muscle mass. These novel findings may suggest that BDNF production is controlled by muscle function and activity and consequently regulates exercise capacity, highlighting the importance of adequate training regarding skeletal muscle in HF patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.