The differentiation potential of skeletal muscle-derived stem cells (MDSCs) after in vitro culture and in vivo transplantation has been extensively studied. However, the clonal multipotency of MDSCs has yet to be fully determined. Here, we show that single skeletal muscle-derived CD34 STEM CELLS 2007;25: 2283-2290 Disclosure of potential conflicts of interest is found at the end of this article.
In order to establish the practical isolation and usage of skeletal muscle-derived stem cells (MDSCs), we determined reconstitution capacity of CD34(-)/CD45(-) (Sk-DN) cells as a candidate somatic stem cell source for transplantation. Sk-DN cells were enzymatically isolated from GFP transgenic mice (C57/BL6N) skeletal muscle and sorted using fluorescence activated cell sorting (FACS), and expanded by collagen gel-based cell culture with bFGF and EGF. The number of Sk-DN cells was small after sorting (2-8 x 10(4)); however, the number increased 10-20 fold (2-16 x 10(5)) after 6 days of expansion culture, and the cells maintained immature state and multipotency, expressing mRNAs for mesodermal and ectodermal cell lineages. Transplantation of expanded Sk-DN cells into the severe muscle damage model (C57/BL6N wild-type) resulted in the synchronized reconstitution of blood vessels, peripheral nerves and muscle fibers following significant recovery of total muscle mass (57%) and contractile function (55%), whereas the non-cell-transplanted control group showed around 20% recovery in both factors. These reconstitution capacities were supported by the intrinsic plasticity of Sk-DN cells that can differentiate into muscular (skeletal muscle), vascular (pericyte, endothelial cell and smooth muscle) and peripheral nerve (Schwann cells and perineurium) cell lineages that was revealed by transplantation to non-muscle tissue (beneath renal capsule) and fluorescence in situ hybridization (FISH) analysis.
The hierarchical relationship of skeletal muscle-derived multipotent stem cells sorted as CD34(+)/CD45(-) (Sk-34) and CD34(-)/CD45(-) (Sk-DN) cells, which have synchronized reconstitution capacities for blood vessels, peripheral nerves, and muscle fibers, was examined. Expression of Sca-1 and CD34 (typical state of freshly isolated Sk-34 cells) in Sk-DN cells was examined using in vitro culture and in vivo cell implantation. Sk-DN cells sequentially expressed Sca-1 and CD34 during cell culture showing self-maintenance and/or self-renewal-like behavior, and are thus considered hierarchically upstream of Sk-34 cells in the same lineage. Sk-34 and Sk-DN cells were further divided into small and large cell fractions by cell sorting. Immunocytochemistry using anti-Pax7 was performed at the time of isolation (before culture) and revealed that only 1% of cells in the large Sk-DN cell fraction were positive for Pax7, while Sk-34 cells and 99% of Sk-DN cells were negative for Pax7. Therefore, putative satellite cells were possibly present in the large Sk-DN cell fraction. However, serial analysis of Pax7 expression by RT-PCR and immunocytochemistry for single and 2 to >40 clonally proliferated Sk-34 and Sk-DN cells revealed that both cell types expressed Pax7 after several asymmetric cellular divisions during clonal-cell culture. In addition, production of satellite cells was seen after muscle fiber formation following Sk-34 or Sk-DN cell transplantation into damaged muscle, and even in the nonmuscle tissue environment (beneath the renal capsule). Thus, Sk-DN cells are situated upstream of Sk-34 cells and both cells can produce Pax7+ cells (putative satellite cells) after cellular division.
BackgroundCellular cardiomyoplasty for myocardial infarction has been developed using various cell types. However, complete differentiation and/or trans-differentiation into cardiomyocytes have never occurred in these transplant studies, whereas functional contributions were reported.Methods and ResultsSkeletal muscle interstitium-derived CD34+/CD45− (Sk-34) cells were purified from green fluorescent protein transgenic mice by flowcytometory. Cardiac differentiation of Sk-34 cells was examined by in vitro clonal culture and co-culture with embryonic cardiomyocytes, and in vivo transplantation into a nude rat myocardial infarction (MI) model (left ventricle). Lower relative expression of cardiomyogenic transcription factors, such as GATA-4, Nkx2-5, Isl-1, Mef2 and Hand2, was seen in clonal cell culture. However, vigorous expression of these factors was seen on co-culture with embryonic cardiomyocytes, together with formation of gap-junctions and synchronous contraction following sphere-like colony formation. At 4 weeks after transplantation of freshly isolated Sk-34 cells, donor cells exhibited typical cardiomyocyte structure with formation of gap-junctions, as well as intercalated discs and desmosomes, between donor and recipient and/or donor and donor cells. Fluorescence in situ hybridization (FISH) analysis detecting the rat and mouse genomic DNA and immunoelectron microscopy using anti-GFP revealed donor-derived cells. Transplanted Sk-34 cells were incorporated into infarcted portions of recipient muscles and contributed to cardiac reconstitution. Significant improvement in left ventricular function, as evaluated by transthoracic echocardiography and micro-tip conductance catheter, was also observed.Conclusions and SignificanceSkeletal muscle-derived multipotent Sk-34 cells that can give rise to skeletal and smooth muscle cells as reported previously, also give rise to cardiac muscle cells as multi-myogenic stem cells, and thus are a potential source for practical cellular cardiomyoplasty.
We have already confirmed that cell sheet transplantation can improve damaged heart function via continuous cytokine secretion. In this study, we hypothesized that cytokine-secreting cell sheets co-cultured with an endothelial cell source may be more effective for repairing ischemic myocardium. Confluent rat fibroblasts cultured on temperature-responsive culture dishes were harvested as contiguous cell sheets by temperature reduction. Green fluorescent protein (GFP)-positive endothelial progenitor cells (EPCs) were seeded on fibroblast sheets to create co-cultured cell sheets, and sandwich-like constructs were engineered by stacking of the co-cultured cell sheets. These constructs were transplanted into rat myocardial infarction models. Cardiac function and histology were assessed in four groups: the sham operation (C) group, the isolated EPC injection (E) group, the transplantation of triple-layer fibroblast sheets (F) group, and the transplantation of triple-layer sandwich-like constructs (E + F) group. Echocardiography showed significant improvement of the fractional shortening in the E + F group in comparison with the C group (0.25 +/- 0.05 vs. 0.16 +/- 0.02). On histological examination, significantly less connective tissue formation was observed in the E, F, and E + F groups when compared to the C group (C, E, F, and E + F groups: 53 +/- 2%, 41 +/- 4%, 40 +/- 4%, and 32 +/- 7%, respectively). Additionally, increased blood vessel formation was detected in the E, F, and E + F groups compared with the C group (C, E, F, and E + F groups: 1.9% +/- 0.6%, 6.7% +/- 0.6%, 7.8% +/- 0.9%, and 10.2% +/- 2.4%, respectively). Furthermore, GFP-staining demonstrated that the newly formed blood vessels were composed of the co-cultured EPCs. Transplantation of cell sheets co-cultured with an endothelial cell source may be a new therapeutic strategy for myocardial tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.