After initiating antiretroviral therapy (ART), a rapid decline in HIV viral load is followed by a long period of undetectable viremia. Viral outgrowth assay suggests the reservoir continues to decline slowly. Here, we use full-length sequencing to longitudinally study the proviral landscape of four subjects on ART to investigate the selective pressures influencing the dynamics of the treatment-resistant HIV reservoir. We find intact and defective proviruses that contain genetic elements favoring efficient protein expression decrease over time. Moreover, proviruses that lack these genetic elements, yet contain strong donor splice sequences, increase relatively to other defective proviruses, especially among clones. Our work suggests that HIV expression occurs to a significant extent during ART and results in HIV clearance, but this is obscured by the expansion of proviral clones. Paradoxically, clonal expansion may also be enhanced by HIV expression that leads to splicing between HIV donor splice sites and downstream human exons.
Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network. Previous evidence suggested that the nonstructural proteins (nsp’s) 3, 4, and 6 of the severe acute respiratory syndrome coronavirus (SARS-CoV), which contain transmembrane domains, would all be required for DMV formation. We have now expressed MERS-CoV replicase self-cleaving polyprotein fragments encompassing nsp3-4 or nsp3-6, as well as coexpressed nsp3 and nsp4 of either MERS-CoV or SARS-CoV, to characterize the membrane structures induced. Using electron tomography, we demonstrate that for both MERS-CoV and SARS-CoV coexpression of nsp3 and nsp4 is required and sufficient to induce DMVs. Coexpression of MERS-CoV nsp3 and nsp4 either as individual proteins or as a self-cleaving nsp3-4 precursor resulted in very similar DMVs, and in both setups we observed proliferation of zippered ER that appeared to wrap into nascent DMVs. Moreover, when inactivating nsp3-4 polyprotein cleavage by mutagenesis, we established that cleavage of the nsp3/nsp4 junction is essential for MERS-CoV DMV formation. Addition of the third MERS-CoV transmembrane protein, nsp6, did not noticeably affect DMV formation. These findings provide important insight into the biogenesis of coronavirus DMVs, establish strong similarities with other nidoviruses (specifically, the arteriviruses), and highlight possible general principles in viral DMV formation.
Vaccination guidelines for patients treated for hematological diseases are typically conservative. Given their high risk for severe coronavirus infectious disease 2019 (COVID-19) it is important to identify those patients that benefit from vaccination. We prospectively quantified serum IgG antibodies to spike subunit 1 (S1) antigens during and after 2-dose mRNA-1273 (Spikevax/Moderna) vaccination in hematology patients. Obtaining S1 IgG ≥300 binding antibody units (BAU)/ml was considered adequate as it represents the lower level of S1 IgG concentration obtained in healthy individuals and it correlates with potent virus neutralization. Selected patients (n=723) were severely immunocompromised due to their disease or treatment thereof. Nevertheless, more than 50% of patients obtained S1 IgG ≥300 BAU/ml after 2-dose mRNA-1273. All patients with sickle cell disease or chronic myeloid leukemia obtained adequate antibody concentrations. Around 70% of patients with chronic graft versus host disease (GvHD), multiple myeloma, or untreated chronic lymphocytic leukemia (CLL) obtained S1 IgG ≥300 BAU/ml. Ruxolitinib or hypomethylating therapy but not high-dose chemotherapy blunted responses in myeloid malignancies. Responses in lymphoma patients, CLL patients on ibrutinib, and chimeric antigen receptor T cell recipients were low. The minimal time-interval after autologous hematopoietic cell transplantation (HCT) to reach adequate concentrations was <2 months for multiple myeloma, 8 months for lymphoma, and 4-6 months after allogeneic HCT. Serum IgG4, absolute B and NK cell number and number of immunosuppressants predicted S1 IgG ≥300 BAU/ml. Hematology patients on chemotherapy, shortly after HCT, or with chronic GvHD should not be precluded from vaccination. Netherlands Trial Register NL9553.
IMPORTANCEIt has become common practice to offer immunocompromised patients with hematologic cancers a third COVID-19 vaccination dose, but data substantiating this are scarce.OBJECTIVE To assess whether a third mRNA-1273 vaccination is associated with increased neutralizing antibody concentrations in immunocompromised patients with hematologic cancers comparable to levels obtained in healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. DESIGN, SETTING, AND PARTICIPANTSThis prospective observational cohort study was conducted at 4 university hospitals in the Netherlands and included 584 evaluable patients spanning the spectrum of hematologic cancers and 44 randomly selected age-matched adults without malignant or immunodeficient comorbidities.EXPOSURES One additional mRNA-1273 vaccination 5 months after completion of the standard 2-dose mRNA-1273 vaccination schedule. Serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens prior to and 4 weeks after a third mRNA-1273 vaccination, and antibody neutralization capacity of wild-type, Delta, and Omicron variants in a subgroup of patients. MAIN OUTCOMES AND MEASURES RESULTSIn this cohort of 584 immunocompromised patients with hematologic cancers (mean [SD] age, 60 [11.2] years; 216 [37.0%] women), a third mRNA-1273 vaccination was associated with median S1-IgG concentrations comparable to concentrations obtained by healthy individuals after the 2-dose mRNA-1273 schedule. The rise in S1-IgG concentration after the third vaccination was most pronounced in patients with a recovering immune system, but potent responses were also observed in patients with persistent immunodeficiencies. Specifically, patients with myeloid cancers or multiple myeloma and recipients of autologous or allogeneic hematopoietic cell transplantation (HCT) reached median S1-IgG concentrations similar to those obtained by healthy individuals after a 2-dose schedule. Patients receiving or shortly after completing anti-CD20 therapy, CD19-directed chimeric antigen receptor T-cell therapy recipients, and patients with chronic lymphocytic leukemia receiving ibrutinib were less responsive or unresponsive to the third vaccination. In the 27 patients who received cell therapy between the second and third vaccination, S1 antibodies were preserved, but a third mRNA-1273 vaccination was not associated with significantly enhanced S1-IgG concentrations except for patients with multiple myeloma receiving autologous HCT. A third vaccination was associated with significantly improved neutralization capacity per antibody. CONCLUSIONS AND RELEVANCEResults of this cohort study support that the primary schedule for immunocompromised patients with hematologic cancers should be supplemented with a delayed third vaccination. Patients with B-cell lymphoma and allogeneic HCT recipients need to be revaccinated after treatment or transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.