Purpose: The optimal treatment of systemic sclerosis (SSc) is a challenge because the pathogenesis of SSc is unclear and it is an uncommon and clinically heterogeneous disease affecting multiple organ systems. The aim of the European League Against Rheumatism (EULAR) Scleroderma Trials and Research group (EUSTAR) was to develop evidence-based, consensus-derived recommendations for the treatment of SSc. Methods: To obtain and maintain a high level of intrinsic quality and comparability of this approach, EULAR standard operating procedures were followed. The task force comprised 18 SSc experts from Europe, the USA and Japan, two SSc patients and three fellows for literature research. The preliminary set of research questions concerning SSc treatment was provided by 74 EUSTAR centres. Results: Based on discussion of the clinical research evidence from published literature, and combining this with current expert opinion and clinical experience, 14 recommendations for the treatment of SSc were formulated. The final set includes the following recommendations: three on SSc-related digital vasculopathy (Raynaud's phenomenon and ulcers); four on SSc-related pulmonary arterial hypertension; three on SSc-related gastrointestinal involvement; two on scleroderma renal crisis; one on SSc-related interstitial lung disease and one on skin involvement. Experts also formulated several questions for a future research agenda. Conclusions: Evidence-based, consensus-derived recommendations are useful for rheumatologists to help guide treatment for patients with SSc. These recommendations may also help to define directions for future clinical research in SSc.
ObjectiveTo identify similarities and differences in the clinical features of adult Japanese patients with individual anti-aminoacyl-tRNA synthetase antibodies (anti-ARS Abs).MethodsThis was a retrospective analysis of 166 adult Japanese patients with anti-ARS Abs detected by immunoprecipitation assays. These patients had visited Kanazawa University Hospital or collaborating medical centers from 2003 to 2009.ResultsAnti-ARS Ab specificity included anti-Jo-1 (36%), anti-EJ (23%), anti-PL-7 (18%), anti-PL-12 (11%), anti-KS (8%), and anti-OJ (5%). These anti-ARS Abs were mutually exclusive, except for one serum Ab that had both anti-PL-7 and PL-12 reactivity. Myositis was closely associated with anti-Jo-1, anti-EJ, and anti-PL-7, while interstitial lung disease (ILD) was correlated with all 6 anti-ARS Abs. Dermatomyositis (DM)-specific skin manifestations (heliotrope rash and Gottron’s sign) were frequently observed in patients with anti-Jo-1, anti-EJ, anti-PL-7, and anti-PL-12. Therefore, most clinical diagnoses were polymyositis or DM for anti-Jo-1, anti-EJ, and anti-PL-7; clinically amyopathic DM or ILD for anti-PL-12; and ILD for anti-KS and anti-OJ. Patients with anti-Jo-1, anti-EJ, and anti-PL-7 developed myositis later if they had ILD alone at the time of disease onset, and most patients with anti-ARS Abs eventually developed ILD if they did not have ILD at disease onset.ConclusionPatients with anti-ARS Abs are relatively homogeneous. However, the distribution and timing of myositis, ILD, and rashes differ among patients with individual anti-ARS Abs. Thus, identification of individual anti-ARS Abs is beneficial to define this rather homogeneous subset and to predict clinical outcomes within the “anti-synthetase syndrome.”
To clarify the association of clinical and prognostic features with dermatomyositis (DM)specific autoantibodies (Abs) in adult Japanese patients with DM.
Skin fibrotic disorders are understood to develop under the influence of some growth factors, such as transforming growth factor-beta (TGF-beta), basic fibroblast growth factor (bFGF), or connective tissue growth factor (CTGF). To establish an appropriate animal model of skin fibrosis by exogenous application of growth factors, we investigated the in vivo effects of growth factors by injecting TGF-beta, CTGF, and bFGF into the subcutaneous tissue of newborn mice. A single application of TGF-beta or bFGF resulted in the formation of transient granulated tissue that disappeared despite 7 days of consecutive injections. A single CTGF injection also caused slight granulation. However, injecting TGF-beta plus CTGF produced long-term fibrotic tissue, which persisted for at least 14 days. Also, fibrotic tissue was observed when CTGF was injected from 4 to 7 days after TGF-beta injections for the first 1-3 days. In situ hybridization analysis revealed the expression of CTGF mRNA in the fibroblasts at least in a few fibrotic conditions. These findings suggest that either CTGF mRNA or an application of exogenous CTGF protein is required for the development of persistent fibrosis. From our study, it appears that interaction of several growth factors is required for persistent fibrotic tissue formation, with TGF-beta causing the induction and CTGF needed for maintenance of skin fibrosis. The animal model on skin fibrosis by exogenous application of growth factors developed in this study may prove useful for future studies on fibrotic disorders.
Connective tissue growth factor (CTGF) is a novel peptide that exhibits platelet-derived growth factor-like activities and is produced by skin fibroblasts after activation with transforming growth factor-beta. Coordinate expression of transforming growth factor-beta followed by CTGF during wound repair suggests a cascade process for control of tissue regeneration. We recently reported a significant correlation between CTGF mRNA expression and histologic sclerosis in systemic sclerosis. To confirm the relation between CTGF and skin fibrosis, we investigated CTGF gene expression in tissue expression in tissue sections from patients with localized scleroderma, keloid, other sclerotic skin disorders using nonradioactive in situ hybridization. In localized scleroderma, the fibroblasts with positive signals for CTGF mRNA were scattered throughout the sclerotic lesions with no preferential distribution around the inflammatory cells or perivascular regions, whereas the adjacent nonaffected dermis was negative for CTGF mRNA. In keloid tissue, the fibroblasts positive for CTGF mRNA were diffusely distributed, especially in the peripheral expanding lesions. In scar tissue, however, the fibroblasts in the fibrotic lesions showed partially positive signals for CTGF mRNA. In eosinophilic fasciitis, nodular fasciitis, and Dupuytren's contracture, CTGF mRNA was also expressed partially in the fibroblasts of the fibrotic lesions. Our findings reinforce a correlation between CTGF gene expression and skin sclerosis and support the hypothesis that transforming growth factor-beta plays an important role in the pathogenesis of fibrosis, as it is the only inducer for CTGF identified to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.