The implementation of genomic selection for Japanese Black cattle, known for rich marbling of their meat, is now being explored. Although multiple-step methods are often adopted for dairy cattle, they present shortcomings such as bias and loss of information in addition to operational complexity. These can be avoided using single-step genomic BLUP (ssGBLUP) based on the relationship matrix H, which is constructed from the numerator relationship matrix (A) augmented by the genomic relationship matrix (G). This study assessed the use of ssGBLUP for 3 economically important traits in Japanese Black cattle. Three aspects of ssGBLUP that are important for practical use were examined specifically: the mixing proportions of blending G with A, selection of subsets of genotyped animals used for constructing H, and prediction ability for ungenotyped animals. Different mixing proportions were tested to assess the influence of these proportions on variance component estimation and prediction accuracy. For all traits, the highest or nearly highest accuracy was obtained when the adopted mixing proportion provided heritability closest to that inferred based on A. However, the accuracy did not increase greatly under adjustment of the mixing proportion, thereby suggesting that the influence of the mixing proportion on the accuracy was limited. Genotype data of influential bulls showed a greater contribution to accuracy than that of bulls that were less influential. Genotyping animals with phenotypic records increased the accuracy. It can be prioritized over genotyping bulls that are not influential on the population. These results are expected to present good guides to the future expansion of genotyped populations. Even for animals without genotype data but with genotyped sires, ssGBLUP provided more accurate prediction than BLUP did. For both phenotype and breeding value prediction, ssGBLUP provides more accurate prediction than BLUP, suggesting its usefulness in genomic selection in Japanese Black cattle.
We evaluated the genetic relationships (1) among feed efficiency traits with different fattening periods, (2) between feed efficiency traits and growth traits, and (3) between feed efficiency traits and carcass traits, to determine the influence of genetic factors on feed efficiency traits. In total, 4,578 Japanese Black cattle from a progeny testing program were used. Residual feed intake (RFI), residual BW gain (RG), and residual intake and BW gain (RIG) were defined as feed efficiency traits, and were measured for the first half (approximately 9 to 15 months of age), latter half (approximately 15 to 21 months of age), and total period of fattening (approximately 9 to 21 months of age). A single-trait animal model for estimating heritability and a two-trait animal model for estimating genetic and phenotypic correlations were used. The heritability estimates for RFI, RG, and RIG were different in each fattening period, ranging from 0.36 to 0.46, 0.19 to 0.28, and 0.28 to 0.34, respectively, and the heritability estimates for the total fattening period were greater than those for the first and latter halves separately. RIG showed the greatest preferred genetic correlation, with a greater feed conversion ratio than the other feed efficiency traits (ranging from -0.84 to -0.96). RG in the first and latter halves of the fattening period had different genetic correlations with the growth starting point (0.82 and -0.06, respectively) and maturity rate (0.49 and -0.51, respectively) of the Gompertz growth curve parameters, and is strongly dependent on the different fattening periods. Feed efficiency traits in different fattening periods had low genetic correlations with the carcass traits (from -0.05 to 0.19 for RFI; from 0.02 to 0.31 for RG; and from -0.11 to 0.20 for RIG). This study indicated the possibility for genetic improvement through the selection of high-RIG animals to decrease feed intake and increase BW gain without any unfavorable correlated responses affecting mature (asymptotic) weight and carcass grade.
Various mutations in the AE1 (anion exchanger 1, band 3) gene cause dominant hereditary spherocytosis, a common congenital hemolytic anemia associated with deficiencies of AE1 of different degrees and loss of mutant protein from red blood cell membranes. To determine the mechanisms underlying decreases in AE1 protein levels, we employed K562 and HEK293 cell lines and Xenopus oocytes together with bovine wild-type AE1 and an R664X nonsense mutant responsible for dominant hereditary spherocytosis to analyze protein expression, turnover, and intracellular localization. R664X-mutant protein underwent rapid degradation and caused specifically increased turnover and impaired trafficking to the plasma membrane of the wild-type protein through hetero-oligomer formation in K562 cells. Consistent with those observations, co-expression of mutant and wild-type AE1 reduced anion transport by the wild-type protein in oocytes. Transfection studies in K562 and HEK293 cells revealed that the major pathway mediating degradation of both R664X and wild-type AE1 employed endoplasmic reticulum (ER)-associated degradation through the proteasomal pathway. Proteasomal degradation of R664X protein appeared to be independent of both ubiquitylation and N-glycosylation, and aggresome formation was not observed following proteasome inhibition. These findings indicate that AE1 R664X protein, which is associated with dominant hereditary spherocytosis, has a dominant-negative effect on the expression of wild-type AE1
The current beef production system of Japanese Black cattle is highly dependent on imported high-concentrate feed, which is given for long fattening periods of 19 months (Gotoh, Nishimura, Kuchida, & Mannen, 2018). In order to reduce production costs and ensure sustainability, genetic improvement of feed efficiency during the fattening period is necessary. Residual feed intake (RFI) is defined as the difference between actual and predicted feed intake (Koch, Swiger, Chambers, & Gregory, 1963), and this has previously been studied in other cattle breeds and livestock (Berry & Crowley, 2013). In addition, residual intake and body weight gain (RIG) has been proposed as an indicator of efficiency (Berry & Crowley, 2012). Thus, animals with a lower RFI and higher residual body weight gain (RG) (Berry & Crowley, 2012) are desirable. The heritabilities for RFI ranged from 0.07 to 0.62 in growing animals across different breeds (Berry & Crowley, 2013). Recently, the genetic parameters for RFI, RG, and RIG during different fattening periods were studied in 4,578 Japanese Black steers tested for a year, suggesting that these traits are moderately heritable and different genetic background could
Because fatty acid composition influences the flavor and texture of meat, controlling it is particularly important for cattle breeds such as the Japanese Black, characterized by high meat quality. We evaluated the predictive ability of single-step genomic best linear unbiased prediction (ssGBLUP) in fatty acid composition of Japanese Black cattle by assessing the composition of seven fatty acids in 3088 cattle, of which 952 had genome-wide marker genotypes. All sires of the genotyped animals were genotyped, but their dams were not. Cross-validation was conducted for the 952 animals. The prediction accuracy was higher with ssGBLUP than with best linear unbiased prediction (BLUP) for all traits, and in an empirical investigation, the gain in accuracy of using ssGBLUP over BLUP increased as the deviations in phenotypic values of the animals increased. In addition, the superior accuracy of ssGBLUP tended to be more evident in animals whose maternal grandsire was genotyped than in other animals, although the effect was small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.