The amino acid sequence of a nonsecretory ribonuclease isolated from human urine was determined except for the identity of the residue at position 7. Sequence information indicates that the ribonucleases of human liver and spleen and an eosinophil-derived neurotoxin are identical or very closely related gene products. The sequence is identical at about 30% of the amino acid positions with those of all of the secreted mammalian ribonucleases for which information is available. Identical residues include active-site residues histidine-12, histidine-119, and lysine-41, other residues known to be important for substrate binding and catalytic activity, and all eight half-cystine residues common to these enzymes. Major differences include a deletion of six residues in the (so-called) S-peptide loop, insertions of two, and nine residues, respectively, in three other external loops of the molecule, and an addition of three residues at the amino terminus. The sequence shows the human nonsecretory ribonuclease to belong to the same ribonuclease superfamily as the mammalian secretory ribonucleases, turtle pancreatic ribonuclease, and human angiogenin. Sequence data suggest that a gene duplication occurred in an ancient vertebrate ancestor; one branch led to the nonsecretory ribonuclease, while the other branch led to a second duplication, with one line leading to the secretory ribonucleases (in mammals) and the second line leading to pancreatic ribonuclease in turtle and an angiogenic factor in mammals (human angiogenin). The nonsecretory ribonuclease has five short carbohydrate chains attached via asparagine residues at the surface of the molecule; these chains may have been shortened by exoglycosidase action.(ABSTRACT TRUNCATED AT 250 WORDS)
The primary structure of a base non-specific ribonuclease from Rhizopus niveus (RNase Rh) was determined by nucleotide sequence analysis of the DNA fragment encoding RNase Rh gene including signal peptide sequence, and amino acid sequence analysis of the peptide obtained from RNase Rh and RNase Rh' (a protease-modified RNase Rh created during the course of purification). The sequence determined was: MKAVLALATLIGSTLASSCSSTA LSCSNSANSDTCCSPEYGLVVLNMQWAPGYGPANAFTLHGLWPDKCSGAYAPSGGCDSN RASSSIASVIKSKDSSLYNSMLTYWPSNQGNNNVFWSHEWSKHGTCVSTYDPDCYDNYE EGEDIVDYFQKAMDLRSQYNVYKAFSSNGITPGGTYTATEMQSAIESYFGAKAKIDCSSG TLSDVALYFYVRGRDTYVITDALSTGSCSGDVEYPTK (the sequence of signal peptide is underlined). The sequence indicates that the homology with the sequence of RNase T2 from A. oryzae with the same base specificity is about 42% and that the sequences around the two histidine residues which are supposed to be involved in the active site are fairly conserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.