Our results suggest that the RVS system can identify enhancing breast lesions with excellent accuracy.
The aims of this study were to investigate the frequency of computed tomography (CT) examinations for paediatric patients below 15 y of age in 128 CT facilities in 28 developing countries of Africa, Asia and Eastern Europe and to assess the magnitude of CT doses. Radiation dose data were available from 101 CT facilities in 19 countries. The dose assessment was performed in terms of weighted CT dose index (CTDI(w)), volume CT index and dose length product (DLP) for chest, chest (high resolution), lumbar spine, abdomen and pelvis CT examinations using standard methods. The results show that on average the frequency of paediatric CT examinations was 20, 16 and 5 % of all CT examinations in participating centres in Africa, Asia and Eastern Europe, respectively. Eleven CT facilities in six countries were found to use adult CT exposure parameters for paediatric patients, thus indicating limited awareness and the need for optimisation. CT images were of adequate quality for diagnosis. The CTDI(w) variations ranged up to a factor of 55 (Africa), 16.3 (Asia) and 6.6 (Eastern Europe). The corresponding DLP variations ranged by a factor of 10, 20 and 8, respectively. Generally, the CTDI(w) and DLP values in Japan are lower than the corresponding values in the three regions in this study. The study has indicated a stronger need in many developing countries to justify CT examinations in children and their optimisation. Awareness, training and monitoring of radiation doses is needed as a way forwards.
The purpose of this prospective study at 73 facilities in 18 countries in Africa, Asia and Eastern Europe was to investigate if the CT doses to adult patients in developing countries are higher than international standards. The dose assessment was performed in terms of weighted computed tomography dose index (CTDIw) and dose length product (DLP) for chest, chest (high resolution), lumbar spine, abdomen and pelvis CT examinations using standard methods. Except in one case, the mean CTDIw values were below diagnostic reference level (DRL) while for DLP, 17 % of situations were above DRLs. The resulting CT images were of adequate quality for diagnosis. The CTDIw and DLP data presented herein are largely similar to those from two recent national surveys. The study has shown a stronger need to create awareness and training of radiology personnel as well as monitoring of radiation doses in many developing countries so as to conform to the ALARA principle.
ObjectiveThe optimization of medical exposure is one of the major issues regarding radiation protection in the world, and The International Committee of Radiological Protection and the International Atomic Energy Agency recommend establishing diagnostic reference levels (DRLs) as tools for dose optimization. Therefore, the development of DRLs based on the latest survey has been required for nuclear medicine-related societies and organizations. This prompted us to conduct a nationwide survey on the actual administered radioactivity to adults for the purpose of developing DRLs in nuclear medicine.MethodsA nationwide survey was conducted from November 25, 2014 to January 16, 2015. The questionnaire was sent to all of the 1249 nuclear medicine facilities in Japan, and the responses were collected on a website using an answered form.ResultsResponses were obtained from 516 facilities, for a response rate of 41 %. 75th percentile of 99mTc-MDP and 99mTc-HMDP: bone scintigraphy, 99mTc-HM-PAO, 99mTc-ECD and 123I-IMP: cerebral blood flow scintigraphy, 99mTc-Tetrofosmin, 99mTc-MIBI and 201Tl-Cl; myocardial perfusion scintigraphy and 18F-FDG: oncology PET (in-house-produced or delivery) in representative diagnostic nuclear medicine scans were 932, 937, 763, 775, 200, 831, 818, 180, 235 and 252, respectively. More than 90 % of the facilities were within the range of 50 % from the median of these survey results in representative diagnostic nuclear medicine facilities in Japan. Responses of the administered radioactivities recommended by the package insert, texts and guidelines such as 740 MBq (99mTc-MDP and 99mTc-HMDP: bone scintigraphy), 740 MBq (99mTc-ECD and 99mTc-HM-PAO: cerebral blood flow scintigraphy) and 740 MBq (99mTc-Tetrofosmin and 99mTc-MIBI: myocardial perfusion scintigraphy), etc. were numerous. The administered activity of many radiopharmaceuticals of bone scintigraphy (99mTc-MDP and 99mTc-HMDP), cerebral blood flow scintigraphy (99mTc-HM-PAO) and myocardial perfusion scintigraphy (99mTc-Tetrofosmin and 99mTc-MIBI), etc. were within the range of the EU DRLs and almost none of the administered radioactivity in Japan exceeded the upper limit of SNMMI standard administered radioactivity.ConclusionsThis survey indicated that the administered radioactivity in diagnostic nuclear medicine in Japan had been in the convergence zone and nuclear medicine facilities in Japan show a strong tendency to adhere to the texts and guidelines. Furthermore, the administered radioactivities in Japan were within the range of variation of the EU and the SNMMI administered radioactivities.
Since the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens of the eye in 2011, there have been extensive discussions in various countries. This paper reviews the current situation in radiation protection of the ocular lens and the discussions on the potential impact of the new lens dose limit in Japan. Topics include historical changes to the lens dose limit, the current situation with occupational lens exposures (e.g., in medical workers, nuclear workers, and Fukushima nuclear power plant workers) and measurements, and the current status of biological studies and epidemiological studies on radiation cataracts. Our focus is on the situation in Japan, but we believe such information sharing will be useful in many other countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.