To clarify the postprandial glucose suppression effect of flavonoids, the inhibitory effects of catechins and theaflavins against alpha-glucosidase (AGH) were examined in this study. It was initially demonstrated that theaflavins and catechins preferentially inhibited maltase rather than sucrase in an immobilized AGH inhibitory assay system. For the maltase inhibitory effects of theaflavins, the effects were observed in descending order of potency of theaflavin (TF)-3-O-gallate (Gal) > TF-3,3'-di-O-Gal > TF-3'-O-Gal > TF. This suggests that the AGH inhibition induced by theaflavins is closely associated with the presence of a free hydroxyl group at the 3'-position of TF as well as the esterification of TF with a mono-Gal group. In addition, the R-configuration at the 3'-position of TF-3-O-Gal showed a higher inhibitory activity than the S-configuration. As a result of a single oral administration of maltose (2 g/kg) in rats, a significant reduction in blood glucose level was observed at a dose of 10 mg/kg of TF-3-O-Gal, demonstrating for the first time that TF-3-O-Gal can suppress glucose production from maltose through inhibition of AGH in the gut.
The present study compared the effect of dietary conjugated linolenic acid (CLNA) on body fat and serum and liver lipid levels with that of CLA in rats. FFA rich in linoleic acid, a-linolenic acid, CLA, or CLNA were used as experimental fats. Male Sprague-Dawley rats (4 wk old) were fed purified diets containing 1% of one of these experimental fats. After 4 wk of feeding, adipose tissue weights, serum and liver lipid concentrations, serum tumor necrosis factor (TNF)-alpha and leptin levels, and hepatic beta-oxidation activities were measured. Compared with linoleic acid, CLA and, more potently, CLNA were found to reduce perirenal adipose tissue weight. The same trend was observed in the weight of epididymal adipose tissue. CLNA, but not CLA, was found to significantly increase serum and liver TG concentrations. Serum FFA concentration was also increased in the CLNA group more than in the other groups. The activity of beta-oxidation in liver mitochondria and peroxisomes was significantly higher in the CLNA group than in the other groups. Thus, the amount of liver TG exceeded the ability of hepatic beta-oxidation. Significant positive correlation was found between the adipose tissue weights and serum leptin levels in all animals (vs. perirenal: r = 0.557, P < 0.001; vs. epididymal: r = 0.405, P < 0.05). A less significant correlation was found between adipose tissue weights and serum TNF-alpha level (vs. perirenal: r = 0.069, P > 0.1; vs. epididymal: r = 0.382, P < 0.05). Although the mechanism for the specific effect of CLNA is not clear at present, these findings indicate that in rats CLNA modulated the body fat and TG metabolism differently from CLA.
D-Psicose, a C3 epimer of D-fructose, is known to lower body weight and adipose tissue weight and affect lipid metabolism. The precise mechanism remains unknown. It has been reported that D-psicose has a short half-life and is not metabolized in the body. To determine how D-psicose modifies lipid metabolism, rats were fed diets with or without 3% D-psicose for 4 weeks. Rats were decapitated without fasting every 6 h over a period of 24 h. Changes in serum and liver lipid levels, liver enzyme activity, and gene expression were quantified in experiment 1. Rats fed D-psicose had significantly lower serum insulin and leptin levels. Liver enzyme activities involved in lipogenesis were significantly lowered by the D-psicose diet, whereas gene expression of a transcriptional modulator of fatty acid oxidation was enhanced. In experiment 2, feeding the D-psicose diet gave significantly lower body weight (389 ± 3 vs 426 ± 6 g, p < 0.05) and food intake (23.8 ± 0.2 vs 25.7 ± 0.4 g/day, p < 0.05) compared to the control diet. Rats fed the D-psicose diet gave significantly higher energy expenditure in the light period and fat oxidation in the dark period compared to rats fed the control diet, whereas carbohydrate oxidation was lower. In summary, these results indicate that the D-psicose diet decreases lipogenesis, increases fatty acid oxidation, and enhances 24 h energy expenditure, leading to d-psicose's potential for weight management.
Punicic acid, one of the conjugated linolenic acid (CLN) isomers, exerts a body-fat reducing effect. Although punicic acid is found in pomegranate and Tricosanthes kirilowii seeds, the amount of this fatty acid is very low in nature. The goal of this study was to produce a transgenic oil containing punicic acid. A cDNA encoding conjugase that converts linoleic acid to punicic acid was isolated from T. kirilowii, and the plant expression vector, pKN-TkFac, was generated. The pKN-TkFac was introduced into Brassica napus by Agrobacterium-mediated transformation. As a result, a genetically modified rapeseed oil (GMRO) containing punicic acid was obtained, although its proportion to the total fatty acids was very low (approximately 2.5%). The effects of feeding GMRO in ICR CD-1 male mice were then examined. Wild-type rapeseed (B. napus) oil (RSO) containing no CLN was used as a control oil. For reference oils, RSO-based blended oils were prepared by mixing with different levels of pomegranate oil (PO), either 2.5% (RSO + PO) or 5.0% (RSO + 2PO) punicic acid. Mice were fed purified diets containing 10% of either RSO, RSO + PO, RSO + 2PO, or GMRO for 4 weeks, and dietary PO dose-dependently reduced perirenal adipose tissue weight with a significant difference between the RSO group and the RSO + 2PO group. GMRO, as compared to RSO, lowered the adipose tissue weight to the levels observed with RSO + 2PO. The liver triglyceride level of the RSO + 2PO and GMRO groups but not that of the RSO + PO group was lower than that of the RSO group. The RSO + 2PO and GMRO groups, but not the RSO + PO group, had increased carnitine-palmitoyltransferase activity in the liver and brown adipose tissue. These results showed that dietary GMRO, even at a dietary punicic acid level as low as 0.25 wt % of diet, reduced body fat mass and altered liver lipid metabolism in mice and was more effective than an equal amount of punicic acid from PO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.