This paper describes the experimental and theoretical studies of an anomalous optical beam deflection phenomenon based on electrooptic effect and space-charge-controlled electrical conduction. In the experiment, a large deflection angle of 250mrad (=14.3°) has been observed by applying ±250V to a 0.5-mm-thick KTa1−xNbxO3 crystal with a short interaction length of 5.0mm. The crystal has a rectangular shape with uniform electrodes and there is no prism shape involved which is a common geometrical shape of crystal, electrode, or ferroelectric domain in the conventional electro-optic deflectors. The operating principle is investigated and it is found that the space-charge-controlled electrical conduction in the crystal plays an essential role in this deflection phenomenon. The electrical conduction is carried by electrons injected from the Ohmic contact of the electrode with the crystal. The injected electrons induce the space-charge effect and the electric field becomes nonuniform between the electrodes. The theoretical analysis shows that the electric field has a square-root dependence on the distance from the cathode. As a result, a linearly graded refractive index is induced by the electrooptic Kerr effect of the crystal and the optical beam is cumulatively deflected as it propagates in the crystal. We named this effect the “space-charge-controlled electro-optic effect” and the factors related to the onset of this effect are also discussed.
An electro-optic beam deflector with unprecedented performance is demonstrated. A full deflection angle of 250mrad (=14.3°) has been achieved by applying only ±250V to a 0.5-mm-thick KTa1−xNbxO3 crystal with a short interaction length of 5.0mm. The operating principle is investigated and the origin of the deflection phenomenon is attributed to a nonuniform electric field induced by space-charge-controlled electrical conduction in the crystal.
We propose a new beam scanning model that is applicable to electrooptic materials with electron traps. With this model, we can achieve both high-speed operation and wide-angle scanning, because the operating speed is limited not by the electron mobility but by the frequency limit of the electrooptic effect of the materials. The voltage dependence of the scanning angle at 100 kHz using a KTa1-xNbxO3 crystal is consistent with the property predicted by the proposed model.
We fabricated cylindrical varifocal lenses with fast responses by using the strong Kerr effect of KTa(1-x)Nb(x)O(3) (KTN) single crystals. We observed focus shifts of up to 87 mm with the assistance of a 250 mm focal length lens, which corresponds to a focus shift from infinity to 720 mm by the KTN lens itself. The response time was as fast as 1 μs. We also present a simulation method for calculating refractive index distributions in KTN single crystals, which is essential when designing the lens. The method is characterized by the strain contribution, which has not conventionally been typical of electro-optic simulations. We used this method to explain the refractive index modulations that are characteristic of the varifocal lenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.