The Chuetsu-Oki Earthquake occurred on July 16, 2007. To understand the mechanism of earthquake generation, it is important to obtain a detailed seismic activity. Since the source region of the 2007 Chuetsu-oki Earthquake lies mainly offshore of Chuetsu region, a central part of Niigata Prefecture, it is difficult to estimate the geometry of faults using only the land seismic network data. A precise aftershock distribution is essential to determine the fault geometry of the mainshock. To obtain the detailed aftershock distribution of the 2007 Chuetsu-oki Earthquake, 32 Ocean Bottom Seismometers (OBSs) were deployed from July 25 to August 28 in and around the source region of the mainshock. In addition, a seismic survey using airguns and OBSs was carried out during the observation to obtain a seismic velocity structure below the observation area for precise hypocenter determination. Seven hundred and four aftershocks were recorded with high spatial resolution during the observation period using OBSs, temporally installed land seismic stations, and telemetered seismic land stations and were located using the double-difference method. Most of the aftershocks occurred in a depth range of 6-15 km, which corresponds to the 6-km/s layer. From the depth distribution of the hypocenters, the aftershocks occurred along a plane dipping to the southeast in the whole aftershock region. The dip angle of this plane is approximately 40• . This single plane with a dip to the southeast is considered to represent the fault plane of the mainshock. The regions where few aftershocks occurred are related to the asperities where large slip is estimated from the data of the mainshock. The OBS observation is indispensable to determine the precise depths of events which occur in offshore regions even close to a coast.
The 2011 off the Pacific coast of Tohoku Earthquake occurred at the plate boundary between the Pacific plate and the landward plate on March 11, 2011, and had a magnitude of 9. Many aftershocks occurred following the mainshock. Obtaining a precise aftershock distribution is important for understanding the mechanism of earthquake generation. In order to study the aftershock activity of this event, we carried out extensive seafloor aftershock observations using more than 100 ocean-bottom seismometers just after the mainshock. A precise aftershock distribution for approximately three months over the whole source area was obtained from the observations. The aftershocks form a plane dipping landward over the whole area, nevertheless the epicenter distribution is not uniform. Comparing seismic velocity structures, there is no aftershock along the plate boundary where a large slip during the mainshock is estimated. Activity of aftershocks in the landward plate in the source region was high and normal fault-type, and strike-slip-type, mechanisms are dominant. Within the subducting oceanic plate, most earthquakes have also a normal fault-type, or strike-slip-type, mechanism. The stress fields in and around the source region change as a result of the mainshock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.