Reduced Gd-EOB-DTPA uptake might be an early event of hepatocarcinogenesis, preceding portal blood flow reduction. The hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI may help estimate histological grading, although difficulties exist in differentiating HCCs from DNs.
Platelets activated by various agonists produce vesicles (microparticles; MPs) from the plasma membrane. However, the mechanism of this MP formation remains to be elucidated. To investigate the possible involvement of protein phosphorylation and cytoskeletal reorganization in MP formation, the effects of various inhibitors on MP formation were investigated. Flow cytometry was employed to detect the amount of MP formation by using monoclonal antibodies against glycoprotein (GP) IIb-IIIa (NNKY 1-32) or GPIIb (Tab). The relationship between changes in cytoskeletal architecture and MP formation in the platelets activated by thrombin plus collagen was observed by scanning electron microscopy (SEM). MPs were observed in the vicinity of the terminals of pseudopods, suggesting that MPs may be related by budding of the pseudopods. Cytochalasin D (10 microM) inhibited MP formation from the activated platelets almost completely. Moreover, SEM of the cytochalasin D-treated platelets revealed the absence of shape change, pseudopod formation and MPs. These findings suggest that cytoskeletal reorganization is necessary for MP formation. Since cytoskeletal reorganization is considered to be regulated by a dynamic phosphorylation-dephosphorylation process, we investigated the effects of the protein phosphatase inhibitors, calyculin A (CLA) and okadaic acid (OA), on MP formation. Flow cytometry showed that these two inhibitors doubled MP formation in activated platelets. SEM of the platelets treated with CLA or OA demonstrated more prominent shape change and pseudopod formation in these platelets than in those without inhibitor. From these results, we conclude that cytoskeletal reorganization, which is controlled by phosphorylation, is involved in MP formation.
Balloon catheter injury of rat carotid arteries induces migration and proliferation of smooth muscle cells (SMCs), with subsequent neointimal formation. Several growth factors, such as platelet-derived growth factor and basic fibroblast growth factor, have been shown to be involved in this process, but the mechanisms that modulate the growth and/or migratory properties of SMCs remain unclear. In this study, we investigated whether heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is known to be a potent SMC stimulator from in vitro study, is associated with the proliferative response of SMCs to arterial injury. Northern blot analysis showed that the transcript levels of HB-EGF increased rapidly approximately 12-fold within 2 hours after injury and declined by 2 days but remained 3-fold at 14 days. In situ hybridization analysis demonstrated that the transcript of HB-EGF remained strongly expressed in the neointima, especially near the luminal surface, at 14 days after injury. Immunohistochemical staining showed that HB-EGF protein was positive in the endothelium and only faintly visible in medial SMCs in uninjured vessels. In contrast, 2 days after injury, positive HB-EGF immunostaining was detected in the medial SMCs along the luminal surface. At 7 days, the neointimal SMCs exhibited strong immunostaining for HB-EGF, and at 14 days, they exhibited a gradient of HB-EGF expression with strong immunoreactivity in the most luminal cells. SMCs labeled with 5-bromo-2'-deoxyuridine in their nuclei showed strong immunostaining for HB-EGF protein. Furthermore, the epidermal growth factor receptor to which HB-EGF can bind was also immunostained positively in neointimal SMCs. These data suggest that HB-EGF may play an important role of the proliferation and migration of SMCs in the process of neointimal accumulation induced by arterial injury, probably in an autocrine, paracrine, and/or juxtacrine manner.
Some HCC were assessed as incomplete ablation on the CT fusion images, although considered completely ablated on side-by-side images at the time of treatment, and incomplete ablation was revealed to be the only independent risk factor for LTP. The CT fusion imaging enables quantitative and accurate evaluation of treatment effect of RFA.
In stepwise hepatocarcinogenesis, uptake of Sonazoid starts decreasing later than that of Gd-EOB-DTPA. Although signal reductions on the post-vascular phase of SEUS or hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI suggest HCC, hypoechoic appearance on the post-vascular phase of SEUS might be HCC-specific, particularly progressed HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.