The epidermal growth factor receptor directed antibody, cetuximab, is an effective clinical therapy for patients with colorectal, head and neck and non-small cell lung cancer patients particularly for those with KRAS and BRAF wild type cancers. Treatment in all patients is limited eventually by the development of acquired resistance but little is known about the underlying mechanism. Here we show, that activation of ERBB2 signaling, either through ERBB2 amplification or through heregulin upregulation, leads to persistent ERK 1/2 signaling and consequently cetuximab resistance. Inhibition of ERBB2 or disruption of ERBB2/ERBB3 heterodimerization restores cetuximab sensitivity in vitro and in vivo. A subset of colorectal cancer patients that exhibit either de novo or acquired resistance to cetuximab based therapy possess ERBB2 amplification or high levels of circulating heregulin. Collectively, these findings identify two distinct resistance mechanisms, both of which promote aberrant ERBB2 signaling, that mediate cetuximab resistance. Moreover, these results suggest that ERBB2 inhibitors, in combination with cetuximanb, represent a rational therapeutic strategy that should be assessed in cetuximab-resistant cancers.
Afatinib demonstrated modest but noteworthy efficacy in patients with NSCLC who had received third- or fourth-line treatment and who progressed while receiving erlotinib and/or gefitinib, including those with acquired resistance to erlotinib, gefitinib, or both.
Cases of non^small-cell lung cancer (NSCLC) carrying the somatic mutation of epidermal growth factor receptor (EGFR) have been shown to be hyperresponsive to the EGFR tyrosine kinase inhibitor gefitinib (IRESSA). If EGFR mutations can be observed in serum DNA, this could serve as a noninvasive source of information on the genotype of the original tumor cells that could influence treatment and the ability to predict patient response to gefitinib. Serum genomic DNA was obtained from Japanese patients with NSCLC before first-line gefitinib monotherapy. Scorpion Amplified Refractory Mutation System technology was used to detect EGFR mutations. Wild-type EGFR was detected in all of the 27 serum samples. EGFR mutations were detected in 13 of 27 (48.1%) patients and two major EGFR mutations were identified (E746_A750del and L858R). The EGFR mutations were seen significantly more frequently in patients with a partial response than in patients with stable disease or progressive disease (P = 0.046, Fisher's exact test). The median progression-free survival was significantly longer in patients with EGFR mutations than in patients without EGFR mutations (200 versus 46 days; P = 0.005, log-rank test). The median survival was 611days in patients with EGFR mutations and 232 days in patients without EGFR mutations (P > 0.05). In pairs of tumor and serum samples obtained from 11patients, the EGFR mutation status in the tumors was consistent with those in the serum of 8 of 11 (72.7%) of the paired samples. Thus, EGFR mutations were detectable using Scorpion Amplified Refractory Mutation System technology in serum DNA from patients with NSCLC. These results suggest that patients with EGFR mutations seem to have better outcomes with gefitinib treatment, in terms of progression-free survival, overall survival, and response, than those patients without EGFR mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.