Global development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet. To this end, it is of utmost importance and a significant challenge to reform the current production systems to reduce GHG emissions and promote the capture of CO 2 from the atmosphere. Herein, we review innovative technologies that offer solutions achieving carbon (C) neutrality and sustainable development, including those for renewable energy production, food system transformation, waste valorization, C sink conservation, and C-negative manufacturing. The wealth of knowledge disseminated in this review could inspire the global community and drive the further development of innovative technologies to mitigate climate change and sustainably support human activities.
In this paper the model outputs from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) are used to examine the climatology and interannual variability of the East Asian winter monsoon (EAWM). The multimodel ensemble (MME) is able to reproduce reasonably well the circulation features of the EAWM. The simulated surface air temperature still suffers from a cold bias over East Asia, but this bias is reduced compared with CMIP phase 3 models. The intermodel spread is relatively small for the large-scale circulations, but is large for the lower-tropospheric meridional wind and precipitation along the East Asian coast. The interannual variability of the EAWM-related circulations can be captured by most of the models. A general bias is that the simulated variability is slightly weaker than in the observations. Based on a selected dynamic EAWM index, the patterns of the EAWM-related anomalies are well reproduced in MME although the simulated anomalies are slightly weaker than the observations. One general bias is that the northeasterly anomalies over East Asia cannot be captured to the south of 308N. This bias may arise both from the inadequacies of the EAWM index and from the ability of models to capture the EAWM-related tropical-extratropical interactions. The ENSO-EAWM relationship is then evaluated and about half of the models can successfully capture the observed ENSO-EAWM relationship, including the significant negative correlation between Niño-3.4 and EAWM indices and the anomalous anticyclone (or cyclone) over the northwestern Pacific. The success of these models is attributed to the reasonable simulation of both ENSO's spatial structure and its strength of interannual variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.