The clinical results of the lateral group were not different from those of the medial group. More graft extrusion was found in the medial group on MRI, and second-look arthroscopic surgery results of the lateral group were not as good as those of the medial group. The VAS and Lysholm scores of the combined group were worse than those of the isolated group. With regard to concomitant surgery, ACL reconstruction was most common in the medial group and cartilage procedures in the lateral group.
An active matrix organic light emitting diode pixel circuit and its driving scheme for high frame frequency are proposed for implementation of a 3D display. The proposed pixel circuit can compensate the threshold voltage distribution of low temperature poly silicon-thin film transistors at high-speed operation of 240Hz or more. According to the simulation, current deviation of 1.73% and 3.94% are obtained at frame rates of 240Hz and 480Hz when V th distribution is ±0.5 V.
Abstract— Large‐sized active‐matrix organic light‐emitting diode (AMOLED) displays require high‐frame‐rate driving technology to achieve high‐quality 3‐D images. However, higher‐frame‐rate driving decreases the time available for compensating Vth in the pixel circuit. Therefore, a new method needs to be developed to compensate the pixel circuit in a shorter time interval. In this work, image quality of a 14‐in. quarter full‐high‐definition (qFHD) AMOLED driven at a frame rate of over 240 Hz was investigated. It was found that image degradation is related to the time available for compensation of the driving TFT threshold voltage. To solve this problem, novel AMOLED pixel circuits for high‐speed operation are proposed to compensate threshold‐voltage variation at frame rates above 240 Hz. When Vth is varied over ±1.0 V, conventional pixel circuits showed current deviations of 22.8 and 39.8% at 240 and 480 Hz, respectively, while the new pixel circuits showed deviations of only 2.6 and 5.4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.