Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.
The nuclear receptor peroxisome proliferator-activated receptor ␥ (PPAR␥) is a key regulator of adipocyte differentiation in vivo and ex vivo and has been shown to control the expression of several adipocyte-specific genes. In this study, we used chromatin immunoprecipitation combined with deep sequencing to generate genome-wide maps of PPAR␥ and retinoid X receptor (RXR)-binding sites, and RNA polymerase II (RNAPII) occupancy at very high resolution throughout adipocyte differentiation of 3T3-L1 cells. We identify >5000 high-confidence shared PPAR␥:RXR-binding sites in adipocytes and show that during early stages of differentiation, many of these are preoccupied by non-PPAR␥ RXR-heterodimers. Different temporal and compositional patterns of occupancy are observed. In addition, we detect co-occupancy with members of the C/EBP family. Analysis of RNAPII occupancy uncovers distinct clusters of similarly regulated genes of different biological processes. PPAR␥:RXR binding is associated with the majority of induced genes, and sites are particularly abundant in the vicinity of genes involved in lipid and glucose metabolism. Our analyses represent the first genome-wide map of PPAR␥:RXR target sites and changes in RNAPII occupancy throughout adipocyte differentiation and indicate that a hitherto unrecognized high number of adipocyte genes of distinctly regulated pathways are directly activated by PPAR␥:RXR.[Keywords: Peroxisome proliferator activated receptor; nuclear receptor; ChIP-seq; adipocyte differentiation] Supplemental material is available at http://www.genesdev.org. Adipogenesis is one of the best characterized differentiation processes. Several preadipocyte cell culture models have been developed and used to carefully dissect the sequence of molecular events governing the adipogenic process. Among these adipogenic cell lines, the murine 3T3-L1 preadipocyte cell line (Green and Kehinde 1974) represents one of the best characterized models. Upon addition of adipogenic inducers, including glucocorticoids, cAMP elevating agents, and insulin/insulin-like growth factor, these cells undergo one to two rounds of mitotic clonal expansion followed by growth arrest and terminal differentiation. Several gain-and loss-of-function experiments have revealed an intricate interplay of activating and inhibitory signals involved in the regulation of the adipogenic process (MacDougald and Mandrup 2002;Rosen and MacDougald 2006).The nuclear receptor peroxisome proliferator-activated receptor ␥ (PPAR␥; NR1C3) is an obligatory key regulator of adipocyte differentiation in vivo as well as ex vivo (Farmer 2006). In addition, PPAR␥ acts as a transcriptional activator of many adipocyte-specific genes involved in lipid synthesis, handling and storage of lipids, growth regulation, insulin signaling, and adipokine production (Lehrke and Lazar 2005). PPAR␥ is also necessary for maintenance of the adipocyte phenotype and for survival of adipocytes in white adipose tissue in vivo
Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N(2)) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N(2)H(4)). Here we show that N(2)H(4) is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N(2)H(4). We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N(2)H(4) synthesis and its oxidation to N(2). These results present a new biochemical reaction forging an N-N bond and fill a lacuna in our understanding of the biochemical synthesis of the N(2) in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle.
Epigenetic regulatory mechanisms and their enzymes are promising targets for malaria therapeutic intervention; however, the epigenetic component of gene expression in P. falciparum is poorly understood. Dynamic or stable association of epigenetic marks with genomic features provides important clues about their function and helps to understand how histone variants/modifications are used for indexing the Plasmodium epigenome. We describe a novel, linear amplification method for next-generation sequencing (NGS) that allows unbiased analysis of the extremely AT-rich Plasmodium genome. We used this method for high resolution, genome-wide analysis of a histone H2A variant, H2A.Z and two histone H3 marks throughout parasite intraerythrocytic development. Unlike in other organisms, H2A.Z is a constant, ubiquitous feature of euchromatic intergenic regions throughout the intraerythrocytic cycle. The almost perfect colocalisation of H2A.Z with H3K9ac and H3K4me3 suggests that these marks are preferentially deposited on H2A.Z-containing nucleosomes. By performing RNA-seq on 8 time-points, we show that acetylation of H3K9 at promoter regions correlates very well with the transcriptional status whereas H3K4me3 appears to have stage-specific regulation, being low at early stages, peaking at trophozoite stage, but does not closely follow changes in gene expression. Our improved NGS library preparation procedure provides a foundation to exploit the malaria epigenome in detail. Furthermore, our findings place H2A.Z at the cradle of P. falciparum epigenetic regulation by stably defining intergenic regions and providing a platform for dynamic assembly of epigenetic and other transcription related complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.