To explore mechanisms by which SGLT2 inhibitors protect diabetic hearts from heart failure, we examined the effect of empagliflozin (Empa) on the ultrastructure of cardiomyocytes in the noninfarcted region of the diabetic heart after myocardial infarction (MI). OLETF, a rat model of type 2 diabetes, and its nondiabetic control, LETO, received a sham operation or left coronary artery ligation 12 h before tissue sampling. Tissues were sampled from the posterior ventricle (i.e., the remote noninfarcted region in rats with MI). The number of mitochondria was larger and small mitochondria were more prevalent in OLETF than in LETO. Fis1 expression level was higher in OLETF than in LETO, while phospho‐Ser637‐Drp1, total Drp1, Mfn1/2, and OPA1 levels were comparable. MI further reduced the size of mitochondria with increased Drp1‐Ser616 phosphorylation in OLETF. The number of autophagic vacuoles was unchanged after MI in LETO but was decreased in OLETF. Lipid droplets in cardiomyocytes and tissue triglycerides were increased in OLETF. Empa administration (10 mg/kg per day) reduced blood glucose and triglycerides and paradoxically increased lipid droplets in cardiomyocytes in OLETF. Empa suppressed Fis1 upregulation, increased Bnip3 expression, and prevented reduction in both mitochondrial size and autophagic vacuole number after MI in OLETF. Together with the results of our parallel study showing upregulation of SOD2 and catalase by Empa, the results indicate that Empa normalizes the size and number of mitochondria in diabetic hearts and that diabetes‐induced excessive reduction in mitochondrial size after MI was prevented by Empa via suppression of ROS and restoration of autophagy.
The mechanism by which SGLT2 inhibitors reduce cardiac events in diabetic patients remains unclear. Here, we examined the effects of an SGLT2 inhibitor on the acute survival rate after myocardial infarction (MI) in an animal model of type 2 diabetes mellitus (DM) and the possible involvement of modification of cardiac metabolomes and antioxidative proteins. MI was induced in DM Otsuka Long-Evans Tokushima Fatty (OLETF) rats and Long-Evans Tokushima Otsuka (LETO) control rats. Treatment with empagliflozin (10 mg/kg per day, 14 days) before MI reduced blood glucose and increased blood and myocardial b-hydroxybutyrate (bOHB) levels in OLETF. Survival rate at 48 hours after MI was significantly lower in OLETF rats than in LETO rats (40% vs. 84%), and empagliflozin significantly improved the survival rate in OLETF rats to 70%, although the sizes of MI were comparable. Patterns of metabolomes and gene expression in the noninfarcted myocardium of OLETF rats were consistent with increased fatty acid oxidation and decreased glucose oxidation. The patterns were modified by empagliflozin, suggesting both increased glucose oxidation and ketone utilization in OLETF rats. Empagliflozin prevented reduction of ATP level in the noninfarcted myocardium after MI and significantly increased myocardial levels of Sirt3 and superoxide dismutase 2 in OLETF rats. Administration of bOHB partially mimicked the effects of empagliflozin in OLETF rats. The results suggest that empagliflozin prevents DM-induced increase in post-MI mortality, possibly by protective modification of cardiac energy metabolism and antioxidant proteins.
Aims/Introduction
Type 2 diabetes mellitus is a risk factor of acute kidney injury after myocardial infarction (MI), a form of cardiorenal syndrome. Recent clinical trials have shown that a sodium–glucose cotransporter 2 (SGLT2) inhibitor improved both cardiac and renal outcomes in patients with type 2 diabetes mellitus, but effects of an SGLT2 inhibitor on cardiorenal syndrome remain unclear.
Materials and Methods
Type 2 diabetes mellitus (Otsuka Long‐Evans Tokushima Fatty rats [OLETF]) and control (Long‐Evans Tokushima Otsuka rats [LETO]) were treated with canagliflozin, an SGLT2 inhibitor, for 2 weeks. Renal tissues were analyzed at 12 h after MI with or without preoperative fasting.
Results
Canagliflozin reduced blood glucose levels in OLETF, and blood β‐hydroxybutyrate levels were increased by canagliflozin only with fasting. MI increased neutrophil gelatinase‐associated lipocalin and kidney injury molecule‐1 protein levels in the kidney by 3.2‐ and 1.6‐fold, respectively, in OLETF, but not in LETO. The renal messenger ribonucleic acid level of Toll‐like receptor 4 was higher in OLETF than in LETO after MI, whereas messenger ribonucleic acid levels of cytokines/chemokines were not significantly different. Levels of lipid peroxides, nicotinamide adenine dinucleotide phosphate oxidase (NOX)2 and NOX4 proteins after MI were significantly higher in OLETF than in LETO. Canagliflozin with pre‐MI fasting suppressed MI‐induced renal expression of neutrophil gelatinase‐associated lipocalin and kidney injury molecule‐1 in OLETF, together with reductions in lipid peroxides and NOX proteins in the kidney. Blood β‐hydroxybutyrate levels before MI were inversely correlated with neutrophil gelatinase‐associated lipocalin protein levels in OLETF. Pre‐incubation with β‐hydroxybutyrate attenuated angiotensin II‐induced upregulation of NOX4 in NRK‐52E cells.
Conclusions
The findings suggest that SGLT2 inhibitor treatment with a fasting period protects kidneys from MI‐induced cardiorenal syndrome, possibly by β‐hydroxybutyrate‐mediated reduction of NOXs and oxidative stress, in type 2 diabetic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.