A photocrosslinkable chitosan to which both azide and lactose moieties were introduced (Az-CH-LA) was prepared as a biological adhesive for soft tissues and its effectiveness was compared with that of fibrin glue. Introduction of the lactose moieties resulted in a much more water-soluble chitosan at neutral pH. Application of ultraviolet light (UV) irradiation to photocrosslinkable Az-CH-LA produced an insoluble hydrogel within 60 s. This hydrogel firmly adhered two pieces of sliced ham with each other, depending upon the Az-CH-LA concentration. The binding strength of the chitosan hydrogel prepared from 30-50 mg/mL of Az-CH-LA was similar to that of fibrin glue. Compared to the fibrin glue, the chitosan hydrogel more effectively sealed air leakage from pinholes on isolated small intestine and aorta and from incisions on isolated trachea. Neither Az-CH-LA nor its hydrogel showed any cytotoxicity in cell culture tests of human skin fibroblasts, coronary endothelial cells, and smooth muscle cells. Furthermore, all mice studied survived for at least 1 month after implantation of 200 microL of photocrosslinked chitosan gel and intraperitoneal administration of up to 1 mL of 30 mg/mL of Az-CH-LA solution. These results suggest that the photocrosslinkable chitosan developed here has the potential of serving as a new tissue adhesive in medical use.
Increasing evidence shows that metabolic abnormalities in body fluids are distinguishing features of the pathophysiology of Parkinson’s disease. However, a non-invasive approach has not been established in the earliest or pre-symptomatic phases. Here, we report comprehensive double-cohort analyses of the metabolome using capillary electrophoresis/liquid chromatography mass-spectrometry. The plasma analyses identified 18 Parkinson’s disease-specific metabolites and revealed decreased levels of seven long-chain acylcarnitines in two Parkinson’s disease cohorts (n = 109, 145) compared with controls (n = 32, 45), respectively. Furthermore, statistically significant decreases in five long-chain acylcarnitines were detected in Hoehn and Yahr stage I. Likewise, decreased levels of acylcarnitine(16:0), a decreased ratio of acylcarnitine(16:0) to fatty acid(16:0), and an increased index of carnitine palmitoyltransferase 1 were identified in Hoehn and Yahr stage I of both cohorts, suggesting of initial β-oxidation suppression. Receiver operating characteristic curves produced using 12–14 long-chain acylcarnitines provided a large area of under the curve, high specificity and moderate sensitivity for diagnosing Parkinson’s disease. Our data demonstrate that a primary decrement of mitochondrial β-oxidation and that 12–14 long-chain acylcarnitines decreases would be promising diagnostic biomarkers for Parkinson’s disease.
Parkinson's disease (PD) is characterized as a chronic and progressive neurodegenerative disorder, and the deposition of specific protein aggregates of α-synuclein, termed Lewy bodies, is evident in multiple brain regions of PD patients. Although there are several available medications to treat PD symptoms, these medications do not prevent the progression of the disease. Soluble epoxide hydrolase (sEH) plays a key role in inflammation associated with the pathogenesis of PD. Here we found that MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced neurotoxicity in the mouse striatum was attenuated by subsequent repeated administration of TPPU, a potent sEH inhibitor. Furthermore, deletion of the sEH gene protected against MPTP-induced neurotoxicity, while overexpression of sEH in the striatum significantly enhanced MPTP-induced neurotoxicity. Moreover, the expression of the sEH protein in the striatum from MPTP-treated mice or postmortem brain samples from patients with dementia of Lewy bodies (DLB) was significantly higher compared with control groups. Interestingly, there was a positive correlation between sEH expression and phosphorylation of α-synuclein in the striatum. Oxylipin analysis showed decreased levels of 8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid in the striatum of MPTP-treated mice, suggesting increased activity of sEH in this region. Interestingly, the expression of sEH mRNA in human PARK2 iPSC-derived neurons was higher than that of healthy control. Treatment with TPPU protected against apoptosis in human PARK2 iPSC-derived dopaminergic neurons. These findings suggest that increased activity of sEH in the striatum plays a key role in the pathogenesis of neurodegenerative disorders such as PD and DLB. Therefore, sEH may represent a promising therapeutic target for α-synuclein-related neurodegenerative disorders.
ObjectiveTo investigate the kinetics and metabolism of caffeine in serum from patients with Parkinson disease (PD) and controls using liquid chromatography–mass spectrometry.MethodsLevels of caffeine and its 11 metabolites in serum from 108 patients with PD and 31 age-matched healthy controls were examined by liquid chromatography–mass spectrometry. Mutations in caffeine-associated genes were screened by direct sequencing.ResultsSerum levels of caffeine and 9 of its downstream metabolites were significantly decreased even in patients with early PD, unrelated to total caffeine intake or disease severity. No significant genetic variations in CYP1A2 or CYP2E1, encoding cytochrome P450 enzymes primarily involved in metabolizing caffeine in humans, were detected compared with controls. Likewise, caffeine concentrations in patients with PD with motor complications were significantly decreased compared with those without motor complications. No associations between disease severity and single nucleotide variants of the ADORA2A gene encoding adenosine 2A receptor were detected, implying a dissociation of receptor sensitivity changes and phenotype. The profile of serum caffeine and metabolite levels was identified as a potential diagnostic biomarker by receiver operating characteristic curve analysis.ConclusionAbsolute lower levels of caffeine and caffeine metabolite profiles are promising diagnostic biomarkers for early PD. This is consistent with the neuroprotective effect of caffeine previously revealed by epidemiologic and experimental studies.Classification of evidenceThis study provides Class III evidence that decreased serum levels of caffeine and its metabolites identify patients with PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.