Background: With the striking increase in the number of elderly people in Japan, dementia has not only become a medical but also a social issue. Methods: We studied the prevalence of dementing disorders in a rural island town of Japan (Ama-cho), using a door-to-door 2-phase design. Results: Of the 120 persons screened as having cognitive impairment, 104 people were diagnosed as having dementia. The prevalence (cases/100 persons aged 65 years and older) was 11.0 for all types of dementia, 7.0 for Alzheimer’s disease, 1.7 for vascular dementia, 0.53 for dementia with Lewy bodies, 0.74 for Parkinson’s disease dementia, 0.21 for progressive supranuclear palsy, 0.11 for frontotemporal lobar degeneration and 0.74 for other dementia. The overall prevalence was higher in women for Alzheimer’s disease and Parkinson’s disease dementia, and in men, for vascular dementia and dementia with Lewy bodies. Conclusion: We confirmed the overall prevalence of dementia in the elderly population aged 65 years and older to be 11.0. This finding is higher compared with previous reports in Japan.
Growth and differentiation of colonic epithelium are regulated in the three-dimensional (3D) physiological architecture, colonic crypt, and deregulation of 3D interactions is involved in tumorigenesis. Cell-based 3D culture systems provide a suitable approach bridging the gap between two-dimensional (2D) culture and animal models. KRAS mutations are found at high frequencies in human colorectal cancer (CRC); however, KRAS-targeted cancer therapy has not been developed. Here, we have established a 3D cell culture model resembling the colonic crypt by use of HKe3 cells, human CRC HCT116 cells disrupted at activated KRAS. In this 3D colonic crypt model, HKe3 cells showed the features of time course-dependent transit-amplifying and terminal-differentiated stages, which are characteristic of normal colonic crypt. On the basis of the features of HCT116 cells, activated KRAS inhibited normal cell polarity and apoptosis in 3D culture. The expression of DNA repair-related tumor suppressor genes including TP53, BRCA1, BRCA2, and EXO-1 was markedly suppressed by activated KRAS in 3D culture but not in 2D culture. These results together suggest that activated KRAS plays critical roles in the accumulation of genetic alterations through inhibition of DNA repair genes and apoptosis and that this 3D culture model will provide a useful tool for investigating the molecular mechanisms of CRC development.
The human ZFAT gene encodes a 1243-amino-acid protein containing one AT hook and 18 C2H2 zinc finger domains, which are highly conserved among ZFAT orthologues from fish to mammalian species. Consistent with the presence of multiple predicted nuclear localization signals, endogenous ZFAT protein was found to be localized to the nucleus. In the mouse tissues examined by Western blotting, ZFAT was found to be expressed in thymus, spleen, and lymph nodes, but not in other tissues, including bone marrow. Furthermore, ZFAT protein was found to be up-regulated during the transition from CD4(-)CD8(-) to CD4(+)CD8(+) thymocytes and to be expressed only in B and T lymphocytes in peripheral lymphoid tissues. Expression array analyses demonstrated that genes that are down-regulated upon ZFAT overexpression in mouse Ba/F3 cells are significantly enriched for those functionally related to immune responses. These results suggest that ZFAT functions as a critical transcriptional regulator in B and T lymphocytes.
The pathogenic events that lead to amyotrophic lateral sclerosis (ALS) have not been elucidated. We previously described familial amyotrophic lateral sclerosis (FALS) caused by a Leu126delTT mutation in the Cu/Zn superoxide dismutase gene (SOD1) and have produced transgenic mice (TgM) carrying the same mutation (SOD1(L126delTT) TgM), which exhibited distinct ALS-like motor symptoms and pathological findings. In this study, we analyzed gene expression in the spinal cord of SOD1(L126delTT) TgM by cDNA microarray. Eleven genes were upregulated and two genes downregulated in pre-symptomatic TgM. In post-symptomatic TgM, 54 genes were upregulated and four genes downregulated. We performed real-time polymerase chain reaction (PCR) analysis of 10 of the 54 upregulated genes in the post-symptomatic TgM. The results of real-time PCR were consistent with those obtained by microarray for micro-crystallin (Crym), heat shock protein 1 (Hspb1/HSP27), serine proteinase inhibitor clade A member 3N (Serpina3n), complement component 1q subcomponent beta polypeptide (C1qb), cathepsin H (Ctsh) and polyadenylate binding protein-interacting protein 1 (Paip1). In immunohistochemical analysis, Hsbp1/HSP27 and Ctsh expression levels were increased in reactive astrocytes at the ventral horn of the spinal cord in post-symptomatic TgM, as were Crym, some of Ctsh and Paip1 in microglial cells. Increased expression of those genes was not observed in the control mice. These four genes may be related to the pathogenesis of FALS, especially with regard to the progression of reactive astrocytes and the inflammatory response of microglial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.