Regulatory mechanisms governing the sequence from progenitor cell proliferation to neuronal migration during corticogenesis are poorly understood1–10. Here we report that phosphorylation of DISC1, a major susceptibility factor for several mental disorders, acts as a molecular switch from maintaining proliferation of mitotic progenitor cells to activating migration of postmitotic neurons. Unphosphorylated DISC1 regulates canonical Wnt signaling via an interaction with GSK3β, whereas specific phosphorylation at Serine 710 (S710) triggers the recruitment of Bardet-Biedl-Syndrome (BBS) proteins to the centrosome. In support of this model, loss of BBS1 leads to defects in migration, but not proliferation, while DISC1 knockdown leads to deficits in both. A phospho-dead mutant can only rescue proliferation, while a phospho-mimic mutant rescues exclusively migration defects. These data highlight a dual role for DISC1 in corticogenesis and suggest that phosphorylation of this protein at S710 activates a key developmental switch.
APP associates with kinesin-1 via JIP1. In JIP1-decicient neurons, the fast velocity and high frequency of anterograde transport of APP cargo are impaired to reduced velocity and lower frequency, respectively. Interaction of JIP1 with KLC via two novel elements in JIP1 plays an important role in efficient APP axonal transport.
Quetiapine is an atypical neuroleptic with a pharmacological profile distinct from classic neuroleptics that function primarily via blockade of dopamine D2 receptors. In the United States, quetiapine is currently approved for treating patients with schizophrenia, major depression and bipolar I disorder. Despite its widespread use, its cellular effects remain elusive. To address possible mechanisms, we chronically treated mice with quetiapine, haloperidol or vehicle and examined quetiapine-specific gene expression change in the frontal cortex. Through microarray analysis, we observed that several groups of genes were differentially expressed upon exposure to quetiapine compared with haloperidol or vehicle; among them, Cdkn1a, the gene encoding p21, exhibited the greatest fold change relative to haloperidol. The quetiapine-induced downregulation of p21/Cdkn1a was confirmed by real-time polymerase chain reaction and in situ hybridization. Consistent with single gene-level analyses, functional group analyses also indicated that gene sets associated with cell cycle/fate were differentially regulated in the quetiapine-treated group. In cortical cell cultures treated with quetiapine, p21/Cdkn1a was significantly downregulated in oligodendrocyte precursor cells and neurons, but not in astrocytes. We propose that cell cycle-associated intervention by quetiapine in the frontal cortex may underlie a unique efficacy of quetiapine compared with typical neuroleptics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.