The role of epinephrine in platelet activation and the effect of an alpha 2-adrenoceptor antagonist, midaglizole, during insulin-induced hypoglycaemia in Type 2 (non-insulin-dependent) diabetes mellitus were examined. The action of midaglizole as a platelet alpha 2-antagonist was confirmed by in vitro studies using platelet-rich plasma and washed platelet suspension. Hypoglycaemia was induced by a bolus injection of short-acting insulin in 24 diabetic patients. They were divided into two groups, a control group (n = 12) and an alpha 2-group (n = 12), and midaglizole was administered orally 60 min before insulin injection in the latter. Blood glucose and plasma C-peptide levels were significantly decreased (p less than 0.005) by insulin injection in both groups. Counter-regulatory hormones, including epinephrine, and arginine vasopressin were similarly increased at the hypoglycaemic nadir compared with the levels at 0 min in both groups. Plasma beta-thromboglobulin was increased at the hypoglycaemic nadir (165.5 +/- 12.6 ng/ml) compared with the level at 0 min (121.0 +/- 11.5, p less than 0.005) in the control group, whereas no significant increase was demonstrated in the alpha 2-group. These results suggest that plasma epinephrine plays an important role in platelet activation during hypoglycaemia in Type 2 diabetes mellitus, and that the platelet activation is prevented by alpha 2-adrenoceptor antagonist.
An excessive glucagon secretion to intravenous arginine infusion was found in obese hyperinsulinaemic patients with glucose intolerance. This study was designed to determine whether the glucagon hyperresponsiveness to arginine in these patients would improve by insulin infused at a high enough dose to overcome insulin resistance. By infusing high dose insulin during arginine infusion, the previously exaggerated glucagon response to arginine could be normalized. To normalize the abnormal glucagon response, insulin doses of 4.2 +/- 0.7 and 3.8 +/- 0.5 IU were required during arginine infusion in obese hyperinsulinaemic patients with impaired glucose tolerance and Type 2 (non-insulin-dependent) diabetes mellitus, respectively. This achieved plasma peak insulin levels 3 to 4 times higher than those observed in non-obese healthy subjects. Furthermore, we clarified whether or not the effect of normalizing insulin action and/or glycaemic excursions contributed to normalizing the exaggerated glucagon response to arginine in these patients. Blood glucose was clamped while high dose insulin was infused at the same levels as observed during the arginine infusion test with no insulin infusion. As a result, normalization of the exaggerated plasma glucagon response was achieved, whether hyperglycaemia existed or not. These results clearly demonstrate that, similar to non-obese hypoinsulinaemic Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetic patients, the exaggerated Alpha-cell response to arginine infusion in obese hyperinsulinaemic patients with glucose intolerance is secondary to the reduction of insulin action on the pancreatic Alpha cell, and that the expression of insulin action plays an important part in normalizing these abnormalities.
Whether Fourier transform infra-red spectroscopy with an attenuated total reflection prism could be applied for noninvasive glucose measurement through oral mucosa was evaluated. As a result, the same absorbance peak at 1033 cm-1 as in glucose aqueous solution was found in the absorbance spectra through mucous membrane. However, these glucose specific peaks were interfered with by the baseline drifts owing to prism attachment and the background spectra from body constituents other than glucose. Therefore, to eliminate these interferences, the calibration curve between the second derivatives of the absorbance peak at 1033 cm-1 and those at 2920 cm-1 was calculated (r = 0.910). By using this calibration curve, the spectral changes due to prism attachment were first eliminated. Secondly, by obtaining the second derivative of the difference between the postprandial absorbance peak and the fasting sample as a characteristic of an individual, high correlations between the corrected second derivatives of absorbance spectra through the mucous membrane of the lip at 1033 cm-1 and the increases in blood glucose concentrations above fasting levels were observed (r = 0.910). In conclusion, it was suggested that Fourier transform infra-red spectroscopy could be useful for noninvasive monitoring of glucose through oral mucosa.
The ultimate goal of the development of an artificial endocrine pancreas is to achieve long-term strict glycemic regulation. To establish the physiological insulin delivery route of the artificial endocrine pancreas, intraperitoneal insulin infusion may be important. For this purpose, we tried to develop a closed-loop intraperitoneal insulin infusion algorithm by analyzing the pharmacokinetics of intraperitoneal regular insulin absorption using a mathematical model. The parameters for this algorithm were calculated to simulate the plasma insulin profile after intraperitoneal insulin injection as closely as possible. To evaluate the appropriateness of this algorithm, we tried glycemic control after an oral glucose load of 2 g/kg or a meal load of 80 kcal/kg in diabetic dogs by applying the algorithm. With the use of the subcutaneous insulin lispro infusion algorithm, which we have previously reported, alloxan-induced diabetic dogs exhibited postprandial hyperglycemia and delayed hyperinsulinemia, followed by hypoglycemia after an oral glucose load of 2 g/kg. However, by using the intraperitoneal insulin infusion algorithm, excellent glycemic control (postprandial blood glucose levels of 9.1 +/- 0.8 mmol/l at 70 min and 3.8 +/- 0.3 mmol/l at 240 min, respectively) could be achieved without any associated delayed hyperinsulinemia or hypoglycemia. Glycemic excursion after a meal load of 80 kcal/kg was also controlled from 3.9 to 10.1 mmol/l. Our results confirm that the intraperitoneal insulin infusion algorithm in vivo is feasible and that this algorithm can be superior to the subcutaneous insulin lispro infusion algorithm in the regulation of blood glucose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.