Objective-Structural brain imaging studies in Obsessive-Compulsive Disorder (OCD) have produced inconsistent findings. This may be partially due to limited statistical power from relatively small samples and clinical heterogeneity related to variation in disease profile and developmental stage.Methods-To address these limitations, we conducted a meta-and mega-analysis of data from OCD sites worldwide. T 1 images from 1,830 OCD patients and 1,759 controls were analyzed, using coordinated and standardized processing, to identify subcortical brain volumes that differ in OCD patients and healthy controls. We additionally examined potential modulating effects of clinical characteristics on morphological differences in OCD patients.Results-The meta-analysis indicated that adult patients had significantly smaller hippocampal volumes (Cohen's d=−0.13; p=5.1x10 −3 , % difference −2.80) and larger pallidum volumes (d=0.16; p=1.6x10 −3 , % difference 3.16) compared to adult controls. Both effects were stronger in medicated patients compared to controls (d=−0.29; p=2.4x10 −5 , % difference −4.18 and d=0.29; p=1.2x10 −5 , % difference 4.38, respectively). Unmedicated pediatric patients had larger thalamic volumes (d=0.38, p=2.1x10 −3 ) compared to pediatric controls. None of these findings were mediated by sample characteristics such as mean age or field strength. Overall the mega-analysis yielded similar results. Conclusion-Our study indicates a different pattern of subcortical abnormalities in pediatric versus adult OCD patients. The pallidum and hippocampus seem to be of importance in adult OCD, whereas the thalamus seems to be key in pediatric OCD. This highlights the potential importance of neurodevelopmental alterations in OCD, and suggests that further research on neuroplasticity in OCD may be useful. IntroductionObsessive-compulsive disorder (OCD) is a neurodevelopmental disorder that affects 1-3% of the population (1; 2). In more than 50% of all OCD cases, symptoms emerge during Location of work and address for reprints: Premika S.W. Boedhoe, M.Sc.,
Our results suggest a higher risk of suicide among Japanese residents. Japan has a higher suicide rate than other countries. Early detection of, and appropriate intervention for, suicidal ideation is important in preventing suicide in psychiatry residents.
BackgroundImpaired cognitive flexibility has been implicated in the genetic basis of obsessive-compulsive disorder (OCD). Recent endophenotype studies of OCD showed neural inefficiency in the cognitive control network and interference by the limbic network of the cognitive control network. Exploring the relationship between the functional brain network and impaired cognitive flexibility may provide novel information about the neurobiological basis of OCD.MethodsWe obtained resting-state functional magnetic resonance imaging (rsfMRI) scans and measured the cognitive flexibility of 37 medication-free OCD patients and 40 healthy control (HC) participants using the Wisconsin Card Sorting Test (WCST). We explored the difference between OCD and HC groups in the functional brain network related to impaired cognitive flexibility from the amygdala and dorsal striatal regions of interest (ROIs) by using a seed-based approach.ResultsSignificant differences between the OCD and HC groups were identified in the resting state functional network from the dorsal caudate. Increased functional connectivity from the dorsal caudate to the dorsal anterior cingulate cortex (dACC) and anterior insula (AI) was associated with poorer cognitive flexibility in the OCD group, but better cognitive flexibility in the HC group.ConclusionsThese results provide evidence that the impaired cognitive flexibility of OCD may be associated with dysfunctions of the brain network from the dorsal caudate (DC) to important nodes of the salience network. Our results extend the neuropsychological model of OCD by showing intrinsically different associations between OCD and HC in functional network and cognitive flexibility.
Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T 1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach.
BackgroundClinical and pharmacological studies of obsessive-compulsive disorder (OCD) have suggested that the serotonergic systems are involved in the pathogenesis, while structural imaging studies have found some neuroanatomical abnormalities in OCD patients. In the etiopathogenesis of OCD, few studies have performed concurrent assessment of genetic and neuroanatomical variables.MethodsWe carried out a two-way ANOVA between a variable number of tandem repeat polymorphisms (5-HTTLPR) in the serotonin transporter gene and gray matter (GM) volumes in 40 OCD patients and 40 healthy controls (HCs).ResultsWe found that relative to the HCs, the OCD patients showed significant decreased GM volume in the right hippocampus, and increased GM volume in the left precentral gyrus. 5-HTTLPR polymorphism in OCD patients had a statistical tendency of stronger effects on the right frontal pole than those in HCs.ConclusionsOur results showed that the neuroanatomical changes of specific GM regions could be endophenotypes of 5-HTTLPR polymorphism in OCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.